ЭЛЕКТРОМАГНИТНЫЕ ЗАМКИ ДЛЯ СИСТЕМ КОНТРОЛЯ ДОСТУПА
Скуд » Оборудование » Электрозамки на двери » Замки электромагнитные
Важнейшим элементом исполнительного устройства систем контроля и управления доступом (СКУД) служит электромагнитный замок. Он устанавливается непосредственно на двери и управляется дистанционно посредством электрического сигнала.
Его задача — ограничение прохода посторонних лиц в жилое, общественное или производственное помещение. Совместно с ним могут применяться магнитоконтактные датчики, контролирующие положение двери.
Широкому распространению запирающих устройств подобного типа способствует их высокая надежность. Они прочно удерживают дверь в закрытом положении, не боятся агрессивных сред и работают при любой температуре, что важно для их наружного применения.
Электромагнитный замок, предназначенный для работы в составе СКУД имеет простое строение. В его корпусе размещается электромагнит, состоящий из сердечника и обмотки. Материал сердечника не обладает эффектом магнитной памяти, что способствует оперативности управления.
Обычно его собирают из Ш-образных пластин из стали, применяемой в большинстве трансформаторов, хотя бывают и цельнометаллические детали.
Обмотка катушки содержит несколько сотен витков медного провода. Проходящий по ним ток создает мощное магнитное поля, способное прочно удерживать дверь в закрытом положении.
Корпус выполняют из ненамагничивающихся материалов:
- нержавейки;
- алюминия;
- пластмасс.
Он имеет приспособление для крепления на полотне или дверной коробке. В комплекте обязательно поставляется железная пластина, фиксирующая дверь в закрытом положении. В состав электрической схемы часто входит двунаправленный защитный диод, способный уменьшить скачки напряжения при переключениях.
Для быстрого снятия остаточной намагниченности применяются электрические конденсаторы.
Рабочим напряжением для большинства магнитных замков является 12 Вольт. Допускаются незначительные отклонения, но они нежелательны. При пониженных значениях резко снижается эффективность работы и усилие удержания. При повышении напряжения возможен перегрев обмотки. Потребляемая мощность невелика и составляет несколько Вт.
ХАРАКТЕРИСТИКИ И УСТРОЙСТВО
В конструкции почти всех электромагнитных замков отсутствуют движущиеся части, способные истираться в процессе эксплуатации. В этом лежит секрет их надежности и длительной службы даже в условиях установки на дверях и воротах, ежедневно пропускающих большой людской поток.
Такие устройства обеспечивают безопасность эвакуации при пожаре. В отличие от механических они автоматически открываются при снятии напряжения.
При интеграции СКУД с системами пожарной сигнализации этот процесс может происходить без участия человека. Дверь, оборудованную электромагнитным замком невозможно открыть отмычкой или подбором ключа.
Главной характеристикой магнитного замка является усилие удержания. Его измеряют в килограммах и выбирают в зависимости от назначения и конструктивных особенностей двери. Для массивных железных дверей устанавливают устройства с усилием на отрыв свыше 500 кг.
На входную уличную могут быть установлены устройства с отрывным усилием 350-500 кг. Для внутренних дверей часто бывает достаточно 150 кг.
Устройство магнитных замков может быть различным. Они действуют на отрыв или на сдвиг. Способ установки чаще бывает накладным, но есть и врезные модели.
По способу установки чаще изготавливаются изделия в накладном варианте исполнения. Они не препятствуют работе доводчика, который в этом случае легко регулируется.
Точность установки таких исполнений не имеет решающего значения. К их недостаткам можно отнести частичное перекрытие дверного проема и изгибающее воздействие на дверное полотно, которое со временем может привести к его деформации.
Сдвижные электромагнитные конструкции применяются на всех видах дверей. Они могут быть накладными и врезными. Их необходимо монтировать с высокой точностью.
При этом выступы должны совпадать с гнездами на ответных деталях, а все зазоры регулируются до предписанных изготовителем значений. Зато их можно скрыть в дверном полотне, и они не занимают часть дверного проема.
В состав электромагнитного замка могут входить встроенные датчики Холла и герконы. Они контролируют закрытие двери и используются в сетевых системах контроля доступа, а также при совместной работе с охранной сигнализацией.При контакте электронного брелока или карточки со считывающим устройством происходит сравнение заложенного в них кода с зашифрованной информацией контроллера. Подбор шифра почти невозможен из-за огромного количества вероятных комбинаций. При положительном результате прибор на несколько секунд снимает напряжение с обмотки, и дверь может быть открыта.
МАГНИТНЫЙ ЗАМОК ДЛЯ МЕЖКОМНАТНЫХ ДВЕРЕЙ
Межкомнатные двери обычно имеют непрочную конструкцию, поэтому для их удерживания в закрытом положении не имеет смысла устанавливать мощное запорное устройство. Внутри здания мала вероятность взлома. Здесь на первый план выходят миниатюрные конструкции, не влияющие на общий дизайн.
Часто производится установка магнитного замка, который врезают в полотно двери. Он удобен в применении и не ограничивает пространство проема. Важной характеристикой такого устройства является его бесшумность.
В комплект поставки обычно входят замок с ответной планкой, крепежные изделия и метизы. Отдельно приобретаются:
- считыватель;
- кнопка выхода;
- контроллер;
- комплект ключей, брелоков или магнитных карт.
На важных объектах во избежание бесконтрольного открывания дверей при отключении напряжения применяются устройства бесперебойного питания. Врезка магнитного замка для межкомнатных дверей осуществляется специалистом. Во внутренних помещениях обычно применяется скрытое размещение всего оборудования, включая проводку кабелей.
Моделей магнитных межкомнатного замков достаточно много, например:
- Soca SL-180s.
- Он имеет собственный вес не более одного килограмма. Его размеры 168х36х21 мм. Напряжение питания 12V/24V. Потребляемая мощность менее 5 Вт. Сила удержания 150 Вт.
- ST-EL181S.
- Вес 1,0 кг. Габариты 184х22х30. Напряжение питания 12V. Мощность 4,8 Вт. Сила удержания 180 Вт.
УСТАНОВКА ЭЛЕКТРОМАГНИТНЫХ ЗАМКОВ
Специальных требований к месту установки электромагнитного замка не существует, но наиболее надежно он будет фиксировать дверь при закреплении в районе середины линии вертикального раствора. Для накладных моделей важно не препятствовать свободному проходу людей.
Для упрощения монтажа зачастую их устанавливают в верхней части двери рядом с доводчиком. При этом конструкция дверного полотна должна быть очень жесткой во избежании возможных перекосов.
Считывающее устройство располагается на видном месте и удобной для использования высоте.
Установка электромагнитного замка выполняется в соответствии с инструкцией и схемой монтажа, предусмотренных для конкретной модели. При прокладке электрической проводки следует соблюдать правила электробезопасности. При работе в системе контроля и управления доступом контроллер подключается к единой сети с выходом на головной компьютер.
Комплект для установки.
В комплект для установки электромагнитного замка обязательно должны входить сам замок в прочном корпусе с ярмом, установочными планками и крепежными деталями для монтажа на полотно и дверную коробку в положении, предусмотренном изготовителем. Остальные устройства, возможно, придется приобретать дополнительно.
При комплектовании учитывается совместимость оборудования и его технические данные. Для этого лучше посоветоваться с грамотным специалистом или подобрать все необходимое в специализированном магазине, где вам дадут необходимую консультацию.
При установке потребуются контроллер, считывающее устройство с комплектом ключей, блок питания, кнопка выхода. Для повышения надежности работы всей системы ее следует оборудовать источником бесперебойного питания.
В случае организации централизованной системы контроля доступом требуется компьютер (сервер) с соответствующим программным обеспечением.
* * *
© 2014-2020 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.
II. Описание работы электромагнитного замка / Системы безопасности / НЗМИ ОЛЕВС
Принцип работы электромагнитного замка
При подаче напряжения на замок в обмотке возникает электрический ток, создающий магнитное поле в магнитной цепи сердечник-якорь (вспомните правило буравчика). Для разрыва магнитной цепи (отрыва якоря) необходимо приложить силу P = 4.06 x B2 x S кгс, где
- B — магнитная индукция, тл;
- S — площадь полюса, см2.
Таким образом усилие отрыва якоря замка не имеет прямой зависимости от напряжения и силы тока. Магнитная индукция B является нелинейной функцией и зависит от магнитной характеристики материалов сердечника и якоря замка (магнитная проницаемость
Теоретически достижимая удельная сила удержания равна 20 кгс/см2 полюса сердечника замка. Наши замки имеют удельную силу удержания около 10 кгс/см2, в то время как удельная сила удержания магнитных замков других производителей составляет 7-8 кгс/см2 (подробнее в разделе «Отличия замков ОЛЕВС»).
Остаточная намагниченность
Явление остаточной намагниченности проявляется в том, что после отключения замка в его магнитной цепи сохраняется остаточная магнитная индукция. В результате сила удержания не исчезает полностью (у замков разных производителей она колеблется от 3-4 до 10-15 кг). Чтобы уменьшить до минимума остаточную намагниченность, требуется создать в обмотке замка переменный затухающий ток. Для этой цели в магнитный замок ОЛЕВС встроена неполярная цепочка конденсаторов, которая вместе с обмоткой магнитного замка образует колебательный контур, и при размыкании цепи питания в контуре возникают затухающие колебания.
Влияние зазора на силу удержания
При неправильной установке замка, деформации двери или при плохой работе доводчика между сердечником и якорем может образоваться воздушный зазор. Этот зазор является большим сопротивлением для магнитного поля замка и приводит к значительному снижению силы удержания. Для правильной работы замка необходимо обеспечить соприкосновение рабочих поверхностей сердечника и якоря.
Влияние напряжения питания на силу удержания магнитного замка
Зависимость силы удержания магнитного замка М1-300 от напряжения питания представлена на графике справа. При напряжении менее 10 В начинается резкое падение усилия удержания (желтая область графика). При повышении напряжения выше 12 В наблюдается незначительное увеличение силы удержания, однако при напряжении более 14-15 В выделяемая на обмотке мощность может привести к перегреву обмотки, нарушению изоляции и повреждению магнитного замка (красная область графика).
Поэтому, когда монтируете электромагнитный замок следует внимательно относиться к напряжению питания — после установки следует проверить соответствие напряжения питания диапазону 10-14 В. Если напряжение питания (на выводах ЭМ замка, а не источника питания) менее 10 В, следует проверить соответствие источника питания и сечение питающих проводов. Если напряжение питания превышает 14-15 В, следует принять меры для понижения напряжения — например установить мощный резистор в цепь питания замка.
Для примера рассчитаем балластный резистор для понижения напряжения с 16 до 14 В на ЭМ замке М1-300:
Сопротивление балластного резистора R = U / I = 2 В / 0.33 А = 6.06 Ом,
Мощность, выделяемая на резисторе, составит P = U x I = 2 В x 0.33 А = 0.66 Вт, где
- U — требуемое падение напряжения 2 В,
- I — рабочий ток магнитного замка М1-300 0.33 А.
Из таблицы номиналов подбираем номинал резистора — 6.8 Ом, максимальная рассеиваемая мощность балластного резистора должна быть не менее 1 Вт.
Для расчета параметров резистора очень удобен онлайн-расчет на портале «Мост Безопасности».
Приблизительно можно считать, что на каждый лишний вольт напряжения (считая от максимальных 14 В) необходим резистор 3.3 Ом 0.5 Вт.
Электромагнитный замок на входную дверь: работа и установка
Замок, установленный на входную дверь, является первым охранником любого помещения. Туда может попасть только тот, кто имеет ключ или знает код. В современных квартирах или офисах вместо привычного механического замка или в дополнение к нему, в дверь устанавливается электронное устройство. Существует несколько разновидностей таких замков. Электромагнитный замок на дверь можно считать наиболее простой конструкцией среди устройств подобного типа.
Из материала вы узнаете:
Конструкция электромагнитного замка
Электромагнитный замок предназначендля ограничения входа в жилые, служебные или производственные помещения. Принцип работы замка основан на удержании сильным магнитным полем металлического якоря. Электромагнит устанавливается на неподвижную часть двери, а пластина-якорь жёстко фиксируется на дверном полотне. Кроме того в запирающую систему обязательно входит дверной доводчик. Питание замка осуществляется от низковольтного источника постоянного тока.
Когда на электромагнит подано напряжение, то сильное магнитное поле, образующееся вокруг катушки, удерживает якорь, а вместе с ним и дверь в закрытом состоянии. Для того чтобы войти в помещение, достаточно на короткое время снять напряжение с обмотки.
Замок состоит из следующих частей:
- Электромагнит
- Пластина-якорь
- Блок питания
- Устройство управления
Электромагнит представляет собой прямоугольный корпус из алюминиевого сплава, внутри которого запрессован сердечник с обмоткой из изолированного провода.
Для снижения потерь от паразитных вихревых токов сердечник набирается из Ш-образных пластин электротехнической стали.
Якорь выполнен из стали, а его передняя плоскость зашлифована для более плотного прилегания к электромагниту.
Для подачи напряжения на электромагнит используются компактные блоки питания, специально предназначенные для любых видов электронных замков. Такие устройства рассчитаны на подключение к бытовой сети напряжением 190-240 вольт. На выходе такой источник выдаёт постоянное напряжение 12 В. Для обеспечения работы электромагнита, ток должен быть не менее 2 ампер. Поскольку электромагнитный замок при отключении напряжения оказывается открытым, то его лучше подключать к источнику бесперебойного питания. Аккумулятор, который входит в комплект такого устройства, может обеспечить работу замка в течение некоторого времени.
По сути, электромагнитный замок на входную дверь является простейшим устройством, для которого важны только два состояния – есть напряжение, и нет напряжения, поэтому самым важным элементом системы является устройство управления, которое и отвечает за работу замка.
С электромагнитным замком можно использовать любые источники питания, с соответствующим напряжением и практически любые устройства управления.
Работа электромагнитного замка
Для установки электромагнитного замка на входную дверь частного дома, квартиры или офиса очень удобно использовать автономный контроллер Z-5R.Это небольшая плата с дискретными элементами и энергонезависимой памятью на 8 кб.
К контроллеру можно подключить следующие устройства:
- Считыватель электронных ключей «TouchMemory»
- Блок питания 12 В
- Электромагнитный замок
- Внутренняя кнопка открытия двери
- Герконовый датчик «Дверь открыта»
- Внешний светодиод
- Зуммер
Снаружи управление электромагнитным замком осуществляется с помощью электронного ключа с кодом. В память контроллера можно записать мастер-ключ, простые ключи и блокирующий ключ. На самой плате установлен зуммер, сигнализирующий о том, что дверь открыта, поэтому вместо геркона, часто подключают внешнюю кнопку звукового вызова.
Из помещения электромагнитный замок можно открыть кнопкой.
Автономный контроллер можно использовать как для управления электромагнитным, так и электромеханическим замком. В одном случае используется режим питание отключить, в другом питание включить. Нужный режим выбирается установкой перемычки «Инверсия питания». Устройство можно использовать для программирования новых ключей и удаления старой базы данных. Контроллер допускает подключение бесконтактного считывателя MatrixII.
Установка и подключение
Электромагнитный замок имеет некоторые особенности, которые ограничиваю его применение. Обычно такие замки устанавливаются на двери, которые открываются «на себя». Гораздо сложнее установить такой замок на дверь, которая открывается «от себя». Это связано, прежде всего, с механическим доводчиком. И совершенно не пригодны для установки электромагнитных замков двери, которые открываются в обе стороны. Так же мало пригодны для установки электромагнитных замков, лёгкие межкомнатные двери, выполненные из дерева. Основная сфера применения – это металлопластиковые двери офисного типа и входные металлические двери.
Перед установкой замка необходимо тщательно разметить места крепления электромагнита и якоря. Поскольку эти два элемента, при закрытой двери, должны быть плотно прижаты друг к другу, никакие зазоры не допускаются. Обычно электромагнит и удерживающая пластина монтируются на верхней части дверной конструкции, причём допускается как горизонтальная, так и вертикальная установка.
Одновременно с электромагнитным замком на входную дверь устанавливается механический доводчик и выполняется его регулировка.
Если дверной косяк слишком узкий, то установку электромагнита выполняют на стальном уголке соответствующего размера.
Внутри помещения выбирается место для размещения блока питания и платы контроллера. Их можно установить в любом удобном месте. Для этой цели подойдёт настенный металлический или пластиковый бокс. Внутри помещения, рядом с дверным косяком, устанавливается кнопка ручного открывания двери. С внешней стороны монтируется считыватель магнитных карт или электронных ключей и кнопка вызова.
Достоинства и недостатки
К достоинствам электромагнитного замка можно отнести его низкую стоимость и простоту установки. Недостатками таких систем является необходимость в дополнительном источнике питания и не слишком высокая надёжность. Электромагнитные замки варьируются по силе удержания.
Так замки, устанавливаемые на металлопластиковые двери в офисные помещения должны выдерживать усилие в 100-150 кг, а тяжелые входные металлические конструкции должны быть оборудованы замками с усилием 300-500 кг.
Поэтому при выборе электромагнитного замка следует обращать внимание именно на этот параметр.
Несмотря на достаточно большую силу удержания, электромагнитные замки можно легко открыть, если наклеить на удерживающую пластину незаметную полоску прозрачного скотча. Магнитное поле ослабнет и сильным нажатием на дверь её можно открыть. Для большинства дверей с такими замками потребуются источники питания с резервным аккумулятором, но электромагнитные замки, устанавливаемые на запасные и аварийные выходы должны работать только от сети. Это связано с тем, что во время пожара электросеть отключается и люди, находящиеся у аварийных выходов могут беспрепятственно покинуть помещение.
Заключение
Очень часто электромагнитные замки устанавливают на калитки оград частных домов. Это самый оптимальный вариант, так как у электромеханического замка может загустеть смазка в холодное время года, а электромагнит может без проблем работать в любых погодных условиях. Поскольку обмотка электромагнита залита эпоксидным компаундом, ему не страшен дождь и постоянная повышенная влажность.
I. Устройство электромагнитного замка / Системы безопасности / НЗМИ ОЛЕВС
Конструкция замка
Электромагнитный замок состоит из сердечника, обмотки (катушки) и корпуса. Сердечник с обмоткой являются электромагнитом.
Сердечник электромагнитного замка выполняется из магнитномягких материалов (без эффекта памяти, как у постоянных магнитов). Большинство производителей замков изготавливают сердечник в виде набора сваренных между собой Ш-образных пластин из электротехнической (трансформаторной) стали. Встречаются замки с сердечником из цельного «куска» электротехнической стали. Их достоинством являются меньшие размеры, т.к. для такого сердечника не требуется корпус (все крепежные элементы можно выполнить на самом сердечнике). Недостаток таких замков — очень большая остаточная намагниченность (до десятков кгс), так как электромагнитные свойства цельного куска хуже свойств ленты электротехнической стали (это связано с технологией производства электротехнической стали).
Обмотка представляет собой катушку из 300-1000 витков эмалированного медного провода. При подаче напряжения в обмотке возникает электрический ток, создающий магнитное поле в сердечнике.
Корпус замка обычно выполняется из немагнитных материалов: алюминий, нержавеющая сталь. В последнее время на рынке стали появляться магнитные замки с корпусом из пластмассы, однако большого распространения они не получили. В корпусе замка крепится сердечник и обмотка. Корпус имеет элементы крепления замка к уголку или планке (деталь для крепления электромагнитного замка на дверной коробке).
Электрическая схема магнитного замка
В самом простом виде электромагнитный замок представляет из себя обмотку L с сердечном.
При отключении питания замка из-за самоиндукции в нем продолжает течь затухающий ток в прежнем направлении. Это приводит к появлению повышенного напряжения (до 30 В) на управляющем элементе (реле или транзисторный ключ). В случае если управление замком (разрывом цепи) осуществляется с помощью реле, возникает искрение контактов, что приводит к ускоренному износу реле. Для уменьшения влияния самоиндукции в схему замка иногда включают двунаправленный защитный диод VD, который гасит кратковременные повышения напряжения при размыкании цепи.
В наших замках защитного диода нет. Поэтому рекомендуем использовать электромагнитные замки ОЛЕВС с домофонами и контроллерами, имеющими на выходе управления замком транзисторный ключ, а не реле.
После отключения питания замка в сердечнике сохраняется некоторая остаточная намагниченность (явление остаточной индукции), и связанная с этим остаточная сила удержания. Чтобы снизить остаточную намагниченность, в схему электромагнитного замка добавляют емкость C, которая вместе с индуктивностью катушки L образуют колебательный контур. При отключении питания замка в цепочке LC возникают затухающие колебания, которые приводят к значительному снижению остаточной намагниченности и связанной с ней остаточной силой удержания.
В наших замках устанавливается размагничивающая емкость.
Покрытие рабочих поверхностей
Так как рабочие элементы замка (сердечник и пластина-якорь) изготавливаются из малолегированных сталей, они подвержены коррозии. Для защиты от коррозии (ржавчины) на рабочие поверхности наносится защитное покрытие. Обычно используется лакирование, цинкование или никелирование.
В электромагнитных замках ОЛЕВС для защиты от коррозии используется цинковое покрытие.
Покрытие | Эстетичность | Защитные свойства | Стоимость | Влияние на силу удержания магнитного замка |
---|---|---|---|---|
Лакирование | Низкая | Низкие | Низкая | Немного снижается из-за увеличения рабочего зазора |
Цинкование | Средняя | Высокие | Средняя | Немного снижается из-за увеличения рабочего зазора, цинк — немагнитный металл (диамагнетик) |
Никелирование | Высокая | Высокие | Высокая | Не изменяется. Никель — магнитный металл (ферромагнетик) |
Если в результате длительной эксплуатации замок утратил защитное покрытие, и началась коррозия рабочих поверхностей сердечника и якоря (появилась ржавчина) — это не повлияет на работу замка — сила удержания не изменится. А для восстановления внешнего вида можно удалить ржавчину мелкой шкуркой и затем покрыть рабочие поверхности тонким слоем лака.
Как работает магнитный замок
С появлением интеллектуальных систем контроля и управления доступом распространились и плотно вошли в обиход электромагнитные замки. Эти устройства вовсе не похожи на привычные запорные механизмы и работают совершенно по другому принципу. Они могут использоваться в составе штатной системы безопасности, совместно с домофоном или автономно. Благодаря подобной универсальности сегодня магнитные замки можно встретить на крупных предприятиях, в бизнес-центрах, общественных зданиях, в частных домах, дачных коттеджах, подъездах многоэтажек.
Электромагнитные замки имеют ряд неоспоримых преимуществ:
-
неуязвимость ко взлому традиционным способом;
-
высокая износостойкость;
-
неспособность к заклиниванию;
-
длительный срок службы;
-
высокая пропускная способность.
Наряду с достоинствами есть у подобных запорных устройств и некоторые недостатки. Основной из них – потребность в непрерывной подаче электропитания. В случае его отсутствия замок теряет способность удерживать дверь, и она открывается. Поэтому наличие резервного источника питания – обязательное условие эксплуатации такого устройства.
Конструкция магнитного замка
Запирающее устройство электромагнитного типа состоит из двух частей: корпуса замка и ответной планки (якоря). Последняя представляет собой сплошную металлическую пластину, сопоставимую по размерам с основным корпусом. Она крепится к дверному полотну и помогает удерживать его в запертом положении.
В корпусе электромагнитного замка располагается лишь сердечник, изготовленный из магнитомягкого материала, и катушка, состоящая из нескольких сотен витков медного провода, покрытого эмалью. Чаще всего применяются обмотки, имеющие от 300 до 1000 витков. Сам корпус устройства зачастую выполнен из нержавеющей стали, алюминия или других немагнитных сплавов. Существуют замки в пластиковых корпусах, однако в силу своей уязвимости они практически не используются.
Принцип работы электромагнитных замков
Электрический ток в обмотке устройства образуется в момент подачи напряжения. При этом сомкнутые ответная пластина (якорь) и сердечник представляют собой магнитную цепь, в которой возникает магнитное поле, удерживающее дверь в запертом положении. Для ее открывания необходимо краткосрочно разорвать магнитную цепь. Это возможно либо с помощью специального электронного ключа, либо путем силового отжима якоря. В последнем случае усилие, необходимое для разрыва цепи, рассчитывается по специальной формуле, а конечное значение указывается в технических характеристиках устройства.
Большое влияние на удерживающие свойства электромагнитного замка оказывает правильность его монтажа.
В случае неплотного прилегания якоря к корпусу устройства вследствие непрофессиональной установки или деформации дверного полотна образуется воздушный зазор. Он создает значительное сопротивление для электромагнитного поля и, как следствие, является причиной ослабления силы удержания замка. Стоит понимать, что это может существенно облегчить работу злоумышленников в случае попытки взлома двери.
Подключаются электромагнитные замки к слаботочной электрической сети с напряжением 12 В, реже – 24 В, через специальный преобразователь. В качестве источника резервного питания используются ИБП с аккумуляторами необходимой емкости.
На сегодняшний день производители выпускают накладные и врезные магнитные замки, предназначенные для монтажа внутри помещений и снаружи зданий. Последние защищены от воздействия негативных погодных факторов и успешно переносят перепады температуры, могут устанавливаться на входных дверях, калитках, воротах.
Магнитный замок: преимущества и недостатки использования
Магнитный замок – одна из разновидностей запирающих устройств, предназначенных для дверей и других входных конструкций. Имеет свои преимущества и недостатки. Но с течением времени и внедрением новых идей инженерной мысли, недочетов становится всё меньше, а плюсов больше.
Применение и принцип действия
Магнитные замки (электромагнитные), применяются в основном в помещениях, где требуется дистанционное открывание запорного устройства двери – на производствах, режимных учреждениях, больших офисных помещениях, подъездах жилых домов, также в частных домах и квартирах.
Их принцип действия основан на способности электрической обмотки (катушки), создавать вокруг себя электромагнитное поле, которое используется, как запирающая сила.
Другими словами катушка втягивает или отпускает ригель замка, либо притягивает металлическую дверь (либо металлическую пластину), препятствуя её открыванию.
Виды электромагнитных замков.
Классифицировать магнитные замки можно по принципу работы, по месту установки, и по методу монтажа. Первая категория в свою очередь делится на электрические и электромеханические устройства, вторая – на монтируемые сверху или посередине дверного полотна, а третья – требует ли конструкция врезки или прочих дополнительных операций по установке.
Самое значимое разделение, это по принципу работы – здесь электромагнитные устройства подразделяются на два вида:
Электромеханический
Этот вид замков обладает защелкой, как и стандартный цилиндровый или сувальдный. Вот только часть этой защелки является сердечником катушки и при подаче на неё напряжения, ригель втягивается и отпирает дверь.
Конструктивно, этот замок может быть очень разным.
Он может быть накладным или врезным, иметь разную форму ригеля, иметь разные источники питания катушки. Многие электромеханические устройства могут работать непосредственно от сети 220В, но также есть и другие варианты, где используются специальные источники питания с различными напряжениями тока. При этом может быть использован, как переменный, так и постоянный ток.
Его недостатком является то, что при отсутствии напряжения питания, он не откроется. Чтобы избежать этого, создают различные дополнительные устройства, позволяющие открыть дверь, в подобных обстоятельствах.
Электромагнитный
Не имеет подвижного ригеля, в этом главное его отличие. Запирает он, притягивая к себе пластину, которая одновременно является частью якоря катушки. Этот замок наиболее распространён и востребован у потребителей. Получается, что дверь «прилипает» и удерживается катушкой замка. Сила удержания, может быть очень разной, в зависимости от потребностей. В запертом состоянии замка, его катушка должна постоянно находиться под напряжением.
Энергопотребление в рабочем состоянии очень мало. К примеру, магнитный замок, создающий усилие в 100 кГ, потребляет 5 Вт.
В случае отсутствия электричества, замок перестаёт действовать и дверь остаётся не запертой. Зависимость запирания от напряжения, можно считать недостатком, однако нормы безопасности предписывают устройство электромагнитных замков таким образом, чтобы в случае обесточивания, происходило аварийное открывание замка.
В большинстве случаев, магнитный замок на дверь монтируется накладным способом и не устанавливается внутрь конструкций. Как правило, это однотипные конструкции, не имеющие большого разнообразия моделей. Его недостатком является то, что он устанавливается в плоскости дверного проёма, что уменьшает сам проём, хотя и незначительно.
Управление магнитными замками и дополнительные устройства
На входную дверь с магнитным замком, часто возлагается немало интеллектуальных функций. Такая дверь помнит множество электронных ключей, причём эти ключи могут быть биометрическими (отпечатки пальцев, сетчатка глаза, голос и т.д.). Она (дверь), должна взаимодействовать с человеком и сообщать ему разную информацию (например правильно ли набран код, идёт ли вызов на домофон и др.).
Современный магнитный замок сопряжён с работой разных датчиков и устройств, как то – домофон, кнопка открывания, датчик электронного кода, датчик положения двери (открыта-закрыта), сигнальные устройства и многое другое.
В качестве устройства, которое управляет замком, а также связывает его с другими элементами системы, используется контроллер.
Контроллер
Контроллер выполнен в виде небольшой монтажной платы, на которой установлен микропроцессор и дополнительные радиодетали, обеспечивающие его работу. На плате имеется многофункциональный разъём, упрощающий подключение контроллера к источнику питания и самому замку.
Контроллер может программироваться с помощью компьютерных устройств и запоминать тысячи кодов и команд. При этом он является надёжным и достаточно простым в установке элементом.
Промышленность выпускает разные модели контроллеров, предназначенные для разных видов замков. Контроллер монтируется рядом с замком, как правило внутри помещений и помещается в специальный пластмассовый кожух.
Контроллер может быть использован, как для работы с электромагнитными замками, так и с электромеханическими.
Конструкции магнитных замков продолжают усовершенствоваться. Фирмы выпускающие такие замки могут выпускать модели в зависимости от специальных потребностей заказчика.
Магнитный замок это современный и модный трэнд, за которым будущее.
Преимущества и недостатки электромагнитного дверного замка
Безопасность любого дома и сохранность имущества в нем, прежде всего, зависит от входной двери, а вернее от замка, который вмонтирован в неё. Среди замков, которые существуют, к одним из надёжных относятся магнитные замки (или электромагнитные).
Перед тем, как рассмотреть, почему магнитные замки считаются одними из надёжных замков, рассмотрим, каким образом крепятся такие замки, а также какой принцип действия в них заложен.
Принцип действия электромагнитного замка
Магнитный замок действует по следующему принципу: если обычный замок закрывается механически (несколькими поворотами ключа), то магнитный замок держит мощное электромагнитное поле, воспроизводимое при помощи обмотки в самом замке. Корпус и его основная составляющая (электромагнит) крепятся к недвижимой части двери. Железная планка прикрепляется к самой двери. В результате, электромагнит и прикрепленная металлическая пластина контактируют, притягиваются с большой силой и дверь оказывается запертой.
Открывается такая дверь либо при наличии специальной кнопки (обычно изнутри), либо используя электронный ключ (обычно снаружи). Что касается взлома такого замка, то такая возможность исключена, либо имеет мизерный процент возможности. Объясняется данный факт просто – чтобы подобрать нужную комбинацию придётся перебрать более миллиарда вариантов.
Тип и способ крепления
Магнитные замки имеют всего два типа конструкции. Первый тип – сдвиговой, то есть замок открывается при сдвиге, при этом направление этого сдвига поперечное. Второй тип – замок открывается отрывом (иными словами – нужно просто потянуть на себя). Соответственно и крепятся электромагнитные замки разными способами: если дверь открывается наружу, то замок используется накладной; если дверь открывается внутрь, то устанавливают врезной электромагнитный замок.
Нюансы установки электромагнитных замков
- Две основные части электромагнита (пластина и корпус) должны иметь плотное соприкосновение (иными словами, если пластина, устанавливаемая на дверь, будет плохо стыковаться к корпусу, то и сила замка будет меньшей).
- Для большей фиксации дополнительно можно установить доводчик;
- Силу электромагнитного поля замка выбирают в зависимости от веса двери. Так, для межкомнатной двери подойдёт замок, который будет удерживать вес от 120 кг; для входной двери – свыше 300 кг.
Преимущества электромагнитного замка
Что касается преимуществ магнитного замка, то их много и они существенные.
- Замок отличается высокой долговечностью, что обусловлено отсутствием движущихся деталей и механизмов;
- Открывать входную дверь можно на расстоянии;
- Устанавливается не только на железные, но и на деревянные и пластиковые двери;
- Все части легко монтируются, обслуживание простое;
- Потребляется минимальное количество электричества;
- Не зависит от окружающей среды и погодных условий;
- Цена магнитного замка вполне доступна;
Недостатки электромагнитного замка
Недостаток один, но весьма существенный. Это зависимость от электричества. Есть питание в сети – замок работает, отключили в доме электричество – дверь открыта. Если эта дверь наружная, то ситуация может стать катастрофической.
Проблему решают двумя путями. Во-первых, можно установить дополнительно систему резервного питания. При выключении в доме света, замок автоматически переключится на нее. Но при серьезной аварии и эта система даст сбой.
Во-вторых, и так обычно и делают, на входную дверь устанавливают второй замок, обычный механический. Такая комбинация имеет свои преимущества. Механический замок надежный, он на виду, выходя из дома, хозяева закрывают дверь на ключ, — все как у всех. Но при этом злоумышленник, скорее всего, и не догадается, что есть еще и магнитный замок и он служит надежной второй линией защиты.
Как работает магнитный замок?
Магнитные замки считаются одними из самых надежных замков, которые вы можете иметь; они чрезвычайно надежны и редко взламываются. Кроме того, их быстро и легко установить, и они обеспечивают быстрый доступ в здание, поэтому магнитные дверные замки являются популярным выбором для офисов, жилых и коммерческих объектов.
Что такое магнитный замок?
Магнитный дверной замок — это замок, в котором для создания магнитной силы используется электрический ток.Из-за повышенной прочности из-за тока двери могут выдерживать давление, поэтому их нельзя открыть силой без использования подтвержденного метода доступа.
Лучшие магнитные замки
Замок | Применение | Удерживающая сила | Тип монитора | Магниты | Цена | Купить онлайн |
---|---|---|---|---|---|---|
Магнитные замки Deedlock Slimline | Двери | До 500 фунтов | Контролируемый или неконтролируемый | Одинарный или двойной | От 27 фунтов стерлингов.59 | Купить в Интернете |
Микромагнитные замки Deedlock | Дверные или внутренние отсеки | До 300 фунтов | Только без контроля | Одинарный | От 25,19 фунтов стерлингов | Купить в Интернете |
Стандартные магнитные замки Deedlock | Внутренние и входные двери | До 1100 фунтов | Контролируемые, неконтролируемые и двойные контролируемые | Одинарные или двойные | От 43,19 фунтов стерлингов | Купить в Интернете |
Securitron M32 Magnalock | Внутренние двери | До 600 фунтов | Контролируемые | Одноместный | От 224 £.39 | Купить в Интернете |
Securitron SAM Shear Magnalock | Двери | До 1200 фунтов | Контролируемый или неконтролируемый | Одинарный | От 455,99 $ | Купить в Интернете |
GeoFire Conquest Тип 59 Магнитный противопожарный держатель | Противопожарные двери | До 50 фунтов | нет | нет | От 29,99 фунтов стерлингов | Купить в Интернете |
Deedlock Внешние магнитные замки | Деревянные или металлические ворота | До 1200 фунтов | Под контролем | Одноместный | От 50 фунтов стерлингов.39 | Купить в Интернете |
Securitron M82 Magnalock | Ворота или забор | До 1800 фунтов | Контролируемый | Одинарный | От 419,99 фунтов стерлингов | Купить в Интернете |
Комплекты магнитных замков
Мы создали индивидуальные комплекты со всем, что вам может понадобиться для установки магнитного замка;Как работает магнитный замок?
В отличие от того, что вы узнали о магнетизме, магнитные замки работают путем встречи и запечатывания северного и южного концов, но магнитные дверные замки используют электрический ток для создания более сильной магнитной силы.
Магнитные дверные замки используют электромагнитную силу для предотвращения открывания дверей, поэтому они идеально подходят для обеспечения безопасности. Магнитные замки, такие как магнитные замки Deedlock, состоят из электромагнита и пластины якоря. Табличка крепится к двери, а магнитная к дверной коробке. В зависимости от выбранного замка зависит от напряжения — и силы — электромагнитной силы. Как показывает практика, чем дороже электромагнитный замок, тем выше удерживающая сила, он может варьироваться от 250 кг до впечатляющих 1000 кг.
Электромагнитный замок при включении или включении создает магнитное поле , в результате чего электромагнит и пластина якоря притягиваются друг к другу достаточно сильно, чтобы дверь не открывалась. Поскольку им требуется питание, чтобы оставаться запертыми, это позволяет им быть безотказными, делая электромагнитные дверные замки безопасными для использования в качестве аварийных выходов. Если бы электричество отключилось при пожаре через пожарное реле или кнопку вызова, дверь открывалась, позволяя людям выйти из здания.
Использование магнитного замка
Электромагнитные замки обычно используются в гостиницах, офисах и жилых домах, поскольку они безопасны, надежны и быстро устанавливаются, поскольку в них мало компонентов.
Узнайте больше об электромагнитных дверных замках в компании Electric Locking Systems или познакомьтесь с другими входными системами, которые мы предлагаем. Чтобы получить совет и рекомендации экспертов, свяжитесь с нашей дружной командой по телефону 01202 941050 или по электронной почте. Не забывайте, что при заказе на сумму более 50 фунтов стерлингов доставка осуществляется бесплатно, а если вы сделаете заказ до 17:00, она будет отправлена в тот же день!
.Принцип работы электромагнитных расходомеровЭлектромагнитные расходомеры , известные просто как магнитные расходомеры, представляют собой объемные расходомеры , которые идеально подходят для сточных вод и других применений, где наблюдается низкий перепад давления и требуется соответствующая проводимость жидкости.
Устройство не имеет движущихся частей и не может работать с углеводородами и дистиллированной водой. Расходомеры Mag также просты в обслуживании.
Электромагнитные расходомеры
Принцип работы магнитных расходомеров на основе закона Фарадея
Магнитные расходомеры работают на основе закона электромагнитной индукции Фарадея.В соответствии с этим принципом, когда проводящая среда проходит через магнитное поле B, создается напряжение E, которое пропорционально скорости v среды, плотности магнитного поля и длине проводника.
В магнитном расходомере ток подается на проволочные катушки, установленные внутри или снаружи корпуса расходомера, для создания магнитного поля. Жидкость, протекающая по трубе, действует как проводник, вызывая напряжение, пропорциональное средней скорости потока.
Это напряжение обнаруживается сенсорными электродами, установленными в корпусе прибора Magflow meter , и отправляется на датчик, который рассчитывает объемный расход на основе размеров трубы.
Математически мы можем сформулировать закон Фарадея так:
E пропорционально V x B x L
[E — напряжение, генерируемое в проводнике, V — скорость проводника, B — напряженность магнитного поля, а L — длина проводника].
Очень важно, чтобы поток жидкости, который должен быть измерен с помощью магнитного расходомера, был электропроводным.Закон Фарадея указывает, что напряжение сигнала (E) зависит от средней скорости жидкости (V), длины проводника (D) и напряженности магнитного поля (B). Таким образом, в поперечном сечении трубки создается магнитное поле.
Обычно, когда проводящая жидкость течет через магнитное поле, индуцируется напряжение. Для измерения этого генерируемого напряжения (которое пропорционально скорости текущей жидкости) используются два электрода из нержавеющей стали, которые устанавливаются друг напротив друга.
Два электрода, которые размещены внутри расходомера, затем подключаются к усовершенствованной электронной схеме, которая может обрабатывать сигнал. Обработанный сигнал поступает в микропроцессор, который рассчитывает объемный расход жидкости.
Электромагнитные расходомеры Формула:
Электромагнитные расходомеры используют закон электромагнитной индукции Фарадея для измерения расхода. Закон Фарадея гласит, что всякий раз, когда проводник длиной l движется со скоростью v перпендикулярно магнитному полю B, во взаимно перпендикулярном направлении индуцируется ЭДС e, которая определяется выражением
e = Blv … (Eq1)
, где
B = плотность магнитного потока (Вт / м2)
l = длина проводника (м)
v = скорость проводника (м / с)
Объемный расход Q определяется как
Q = (πd2 / 4) v… (eq2)
, где
d = диаметр трубы
v = средняя скорость потока (в данном случае скорость проводника)
Из уравнения (eq1)
v = e / Bl
Q = πd2e / 4Bl
Q = Ke
, где K — постоянная метра.
Таким образом, объемный расход пропорционален наведенной ЭДС . В практических приложениях мы должны ввести значение постоянной счетчика «K» в магнитном расходомере, которое доступно в каталоге / руководстве поставщика.
Ограничения электромагнитных расходомеров
(i) Измеряемое вещество должно быть проводящим. Следовательно, его нельзя использовать для измерения расхода газов и пара, нефтепродуктов и подобных жидкостей с очень низкой проводимостью.
(ii) Чтобы сделать измеритель нечувствительным к изменениям сопротивления жидкости, эффективное сопротивление жидкости между электродами не должно превышать 1% полного сопротивления внешней цепи.
(iii) Это очень дорогое устройство.
(iv) Поскольку счетчик всегда измеряет объемную скорость, объем любых взвешенных веществ в жидкости будет включен.
(v) Во избежание каких-либо проблем, которые могут быть вызваны увлеченным воздухом, при установке расходомерной трубки на горизонтальном трубопроводе электроды должны быть на горизонтальном диаметре.
(vi) Поскольку проверка нуля на установке может быть выполнена только путем остановки потока, требуются запорные клапаны, а также может потребоваться байпас, через который можно направить поток во время проверки нуля.
(vii) Трубка должна быть заполнена, если регулирующие клапаны установлены перед счетчиком.
Преимущества электромагнитного расходомера
(i) Препятствия на пути потока практически отсутствуют, поэтому расходомеры этого типа могут использоваться для измерения тяжелых взвесей, включая грязь, сточные воды и древесную массу.
ii) В расходомере этого типа нет потери напора, за исключением той длины прямой трубы, которую он занимает.
(iii) На них не сильно влияют возмущения потока выше по потоку.
(iv) На них практически не влияют изменения плотности, вязкости, давления и температуры.
(v) Требования к электроэнергии могут быть низкими (15 или 20 Вт), особенно для импульсных типов постоянного тока.
(vi) Эти счетчики могут использоваться как двунаправленные счетчики.
(vii) Счетчики подходят для большинства кислот, щелочей, воды и водных растворов, потому что выбранные облицовочные материалы являются не только хорошими электрическими изоляторами, но и устойчивы к коррозии.
(viii) Счетчики широко используются для работы с жидким навозом не только потому, что они не создают препятствий, но и потому, что некоторые футеровки, такие как полиуретан, неопрен и резина, обладают хорошей стойкостью к истиранию и эрозии.
(ix) Они способны обрабатывать очень низкие потоки.
Недостатки магнитного расходомера
(i) Эти расходомеры могут использоваться только для жидкостей с приемлемой электропроводностью.
(ii) Точность находится только в диапазоне ± 1% в диапазоне расхода 5%.
(iii) Размер и стоимость катушек возбуждения и схем не увеличиваются пропорционально их размеру отверстия трубы. Следовательно, счетчики небольшого размера громоздки и дороги.
Области применения магнитных расходомеров
Этот электромагнитный расходомер неинтрузивного типа может использоваться в целом для любой жидкости, имеющей приемлемую электрическую проводимость выше 10 микросименс / см.
Жидкости, такие как песчано-водяной шлам, угольный порошок, шлам, сточные воды, древесная масса, химикаты, вода, отличная от дистиллированной воды в крупных трубопроводах, горячие жидкости, высоковязкие жидкости, особенно в пищевой промышленности, криогенные жидкости могут измеряться электромагнитным расходомер.
Как использовать магнитные расходомеры
Магнитные расходомеры измеряют скорость проводящих жидкостей в трубах, таких как вода, кислоты, щелочь и шламы. Магнитные расходомеры могут правильно измерять, когда электрическая проводимость жидкости превышает примерно 5 мкСм / см.Будьте осторожны, потому что использование магнитных расходомеров для жидкостей с низкой проводимостью, таких как деионизированная вода, питательная вода для котла или углеводороды, может привести к отключению расходомера и измерению нулевого расхода.
Этот расходомер не препятствует потоку, поэтому его можно применять для чистых, санитарных, грязных, агрессивных и абразивных жидкостей. Магнитные расходомеры могут применяться к потокам жидкостей, которые являются проводящими, поэтому углеводороды и газы не могут быть измерены с помощью этой технологии из-за их непроводящей природы и газообразного состояния, соответственно.
Магнитные расходомеры не требуют большого количества прямых участков на входе и выходе, поэтому их можно устанавливать на относительно коротких участках. Для магнитных расходомеров обычно требуется 3-5 диаметров прямого участка выше по потоку и 0-3 диаметров прямого участка ниже по потоку, измеренных от плоскости электродов магнитного расходомера.
Грязные жидкости применяются в водоснабжении, сточных водах, горнодобывающей промышленности, переработке полезных ископаемых, энергетике, целлюлозно-бумажной и химической промышленности. Применения для водоснабжения и водоотведения включают коммерческую транспортировку жидкостей в магистралях между районами водоснабжения / канализации.
Магнитные расходомеры используются на водоочистных станциях для измерения очищенных и неочищенных сточных вод, технической воды, воды и химикатов. Применения в горнодобывающей и перерабатывающей промышленности включают потоки технологической воды и технологического шлама, а также потоки тяжелых сред.
При должном внимании к материалам конструкции можно измерить расход высококоррозионных жидкостей (например, кислоты и щелочи) и абразивных шламов. Применение коррозионных жидкостей обычно встречается в процессах химической промышленности и в системах подачи химикатов, используемых в большинстве отраслей.Шламы обычно используются в горнодобывающей промышленности, переработке полезных ископаемых, целлюлозно-бумажной промышленности и очистке сточных вод.
Магнитные расходомеры часто используются там, где жидкость подается под действием силы тяжести. Убедитесь, что ориентация расходомера такова, что расходомер полностью заполнен жидкостью. Если не обеспечить полное заполнение расходомера жидкостью, это может существенно повлиять на измерение расхода.
Будьте особенно осторожны при эксплуатации магнитных расходомеров в вакууме, потому что некоторые футеровки магнитных расходомеров могут разрушиться и попасть в трубопровод при работе в вакууме, что приведет к катастрофическому повреждению расходомера.
Обратите внимание, что условия вакуума могут возникать в трубах, которые, по-видимому, не подвергаются воздействию вакуума, например, в трубах, в которых может конденсироваться газ (часто в ненормальных условиях).
Аналогичным образом, чрезмерная температура в магнитных расходомерах (даже кратковременно при ненормальных условиях) может привести к необратимому повреждению расходомера.
Статьи, которые могут вам понравиться:
Принцип измерения расхода по площади
Почему важен коэффициент диапазона изменения
Вопросы по измерению расхода
Анимация датчика расхода рабочего колеса
Принцип вращающегося расходомера
.Принцип работы и испытания электромагнитного реле Как работает электромагнитное реле?
Как показано на рисунке ниже, электромагнитное реле состоит из электромагнита, якоря, пружины, подвижного контакта и неподвижного контакта.
Обычно электромагнитное реле имеет две цепи: низковольтную схему управления и высоковольтную рабочую схему. Низковольтная схема управления включает в себя катушку электромагнитного реле, низковольтный источник питания и переключатель.В высоковольтную рабочую цепь входят высоковольтный источник питания, двигатель и контакты электромагнитного реле.
Принцип работы электромагнитных реле несложный, в основном они работают по принципу электромагнитной индукции. При включении питания в низковольтной цепи управления ток проходит через катушку электромагнита, создавая магнитное поле. Затем якорь создает всасывающую силу, заставляя подвижный контакт и неподвижный контакт соприкасаться.Таким образом, рабочая цепь включается, и двигатель начинает работать. При отключении питания в низковольтной цепи управления ток в катушке пропадет и якорь под действием пружины разделит подвижный контакт и неподвижный контакт. Рабочий контур отключается и двигатель перестает работать.
Вообще говоря, электромагнитное реле использует электромагнит для управления состоянием «включено» или «выключено» рабочей цепи.При подаче напряжения на оба конца катушки, катушка будет протекать с током и создавать электромагнитный эффект. Электромагнит притягивает якорь к железному сердечнику против натяжения пружины, чтобы подтянуть подвижный контакт якоря к неподвижному контакту (нормально разомкнутый контакт или НО). При отключении питания притяжение электромагнита исчезнет, и якорь вернется в свое положение под натяжением пружины, чтобы освободить подвижный контакт от неподвижного контакта (нормально замкнутый контакт или NC).Вытягивание и отпускание используются для управления размыканием и замыканием цепи. Нормально разомкнутый и замкнутый контакты соответственно относятся к стационарному контакту, находящемуся в состоянии «включено», когда катушка отключена от питания, и стационарному контакту в состоянии «выключено», когда катушка подключена к источнику питания.
Как проверить электромагнитное реле?
После того, как вы узнаете о рабочих характеристиках электромагнитного реле, действительно полезно узнать, как проверить ЭМИ, чтобы вы могли выяснить, исправно ли электромагнитное реле, или проверить, есть ли проблемы с ЭМИ?
- Проверка сопротивления катушки
С помощью мультиметра измерить сопротивление катушки реле и определить, находится ли катушка в состоянии разомкнутой цепи.Сопротивление катушки реле тесно связано с ее рабочим напряжением и рабочим током. Рабочее напряжение и рабочий ток катушки можно рассчитать по ее сопротивлению. - Проверка сопротивления контакта
Переведите мультиметр в режим измерения сопротивления и используйте его для измерения сопротивления нормально замкнутого контакта и подвижного контакта. Их сопротивление предполагается нулевым. Если сопротивление нестабильно или больше указанного значения, это означает, что контакт находится в состоянии плохого контакта.Если сопротивление нормально разомкнутого контакта и подвижного контакта кажется бесконечным, состояние следует оценивать как контактное сцепление. Таким образом, пользователи могут различать, какой из них является нормально замкнутым контактом, какой — нормально разомкнутым контактом и находится ли реле в хорошем состоянии (особенно для использованного реле). - Тестирование втягивающего напряжения и втягивающего тока
Подключите регулируемый источник питания регулирования к реле и подайте на реле набор напряжений. Также подключите амперметр к цепи питания для контроля.Медленно увеличивайте напряжение и, услышав звук срабатывания реле, запишите напряжение и ток срабатывания. Для точности попробуйте еще раз и вычислите его среднее значение. - Проверка напряжения расцепителя и тока расцепителя
Проведите испытание указанными способами. Когда реле втянут, постепенно уменьшайте напряжение источника питания. Когда снова услышите звук отпускания реле, запишите напряжение и ток. Обычно отпускное напряжение реле составляет 10-50% от напряжения срабатывания.Если напряжение расцепления слишком низкое (ниже 1/10 от напряжения втягивания), он не сможет нормально работать. Это отрицательно скажется на стабильности схемы и надежности работы.
Что такое электромагнитное реле? — Определение и типы
Определение: Электромагнитные реле — это те реле, которые работают по принципу электромагнитного притяжения. Это тип магнитного переключателя, который использует магнит для создания магнитного поля. Затем магнитное поле используется для размыкания и замыкания переключателя и для выполнения механической операции.
Типы электромагнитного реле
По принципу действия электромагнитные реле в основном делятся на два типа.Это
- Реле электромагнитного притяжения
- Реле электромагнитной индукции
1. Реле электромагнитного притяжения
В этом реле якорь притягивается к полюсу магнита. Электромагнитная сила, действующая на подвижный элемент, пропорциональна квадрату тока, протекающего через катушку. Это реле реагирует как на переменный, так и на постоянный ток.
Для количества переменного тока развиваемая электромагнитная сила равна
.Приведенное выше уравнение показывает, что электромагнитное реле состоит из двух компонентов, один постоянный, не зависящий от времени, а другой, зависящий от времени и пульсирующий с удвоенной частотой питания.Эта двойная частота питания создает шум и, следовательно, повреждает контакты реле.
Трудность двухчастотного источника питания преодолевается путем разделения потока, развиваемого в электромагнитном реле. Эти потоки действовали одновременно, но различались по фазе времени. Таким образом, результирующая отклоняющая сила всегда положительна и постоянна. Разделение потоков достигается за счет использования электромагнита, имеющего фазосдвигающие цепи, или за счет установки затеняющих колец на полюсах электромагнита.
Реле электромагнитного притяжения — это простейший тип реле, которое включает в себя плунжер (или соленоид), шарнирный якорь, вращающийся якорь (или сбалансированный) и поляризованное реле с подвижным железом. Все эти реле показаны ниже.
а. Реле со сбалансированным лучом — В реле такого типа сравниваются две величины, потому что развиваемая электромагнитная сила изменяется пропорционально квадрату ампер-витка. Коэффициент рабочего тока для такого реле невысокий. Если реле настроено на быструю работу, то при быстрой работе оно будет иметь тенденцию выходить за пределы допустимого диапазона.
б. Реле с откидным якорем — Чувствительность реле можно увеличить для работы от постоянного тока, добавив постоянный магнит. Это реле также известно как подвижное поляризованное реле.
2. Реле электромагнитной индукции
Электромагнитное реле работает по принципу асинхронного двигателя с расщепленной фазой. Начальная сила создается на подвижном элементе, которым может быть диск или другая форма ротора немагнитного подвижного элемента.Сила создается за счет взаимодействия электромагнитных потоков с вихревым током, который индуцируется в роторе этими потоками.
Для получения разности фаз потоков использовалась структура другого типа. Этих строений
а. Конструкция с экранированным полюсом
b. Счетчик ватт-часов или структура с двойной обмоткой
c. Структура индукционной чашки.
а. Конструкция заштрихованных столбов
Эта катушка обычно возбуждается током, протекающим в одиночной катушке, намотанной на магнитную структуру, содержащую воздушный зазор.Потоки в воздушном зазоре, создаваемые током инициализации, разделяются на два потока смещения во времени-пространстве и заштрихованным кольцом. Заштрихованное кольцо состоит из медного кольца, охватывающего часть поверхности полюса каждого полюса.
Диск изготовлен из алюминия. Инерция алюминиевого диска очень низкая .. Следовательно, им требуется меньший отклоняющий момент для его движения. В двух кольцах есть ток, индуцированный переменным потоком электромагнитного поля. Магнитное поле, возникающее из-за тока, создает магнитный поток в части железного кольца, окруженной кольцом, который отстает по фазе на 40-50 ° от потока в незатененной части полюса.
г. Конструкция счетчика ватт-часов
Эта конструкция состоит из электромагнита E-образной формы и U-образного электромагнита с вращающимся между ними без диска. Сдвиг фаз между потоками, создаваемыми электромагнитом, достигается потоком, создаваемым двумя магнитами, имеющими различное сопротивление и индуктивность для двух цепей.
Электромагнит E-образной формы имеет две обмотки: первичную и вторичную. Первичный ток несёт ток реле I 1 , в то время как вторичная обмотка соединена с обмотками U-образного электромагнита.
Первичная обмотка передает ток реле I 1 , в то время как вторичный ток индуцирует ЭДС во вторичной обмотке и, таким образом, циркулирует в ней ток I 2 . Поток φ 1 индуцирует в E-образном магните, а поток φ индуцирует в U-образном магните. Эти потоки, индуцированные в верхнем и нижнем магнитном поле, различаются по фазе на угол θ, который будет развивать вращающий момент на диске, пропорциональный φ 1 φ sinθ.
Наиболее важной особенностью реле является то, что размыкание может управлять их работой или замыкать цепь вторичной обмотки.Если вторичная обмотка разомкнута, крутящий момент не будет развиваться, и, таким образом, реле может выйти из строя.
г. Реле индукционного стакана
Реле, работающее по принципу электромагнитной индукции, известно как реле индукционной чашки. Реле имеет два или более электромагнита, которые возбуждаются катушкой реле. Статический железный сердечник помещается между электромагнитом, как показано на рисунке ниже.
Катушка, намотанная на электромагнит, создает вращающееся магнитное поле.Из-за вращающегося магнитного поля внутри чашки возникает ток. Таким образом, чашка начинает вращаться. Направление вращения чашки такое же, как у тока.
В реле индукционной чашки создается больший крутящий момент по сравнению с затемненными реле и реле типа ваттметров. Реле быстро срабатывает, и их время срабатывания составляет примерно 0,01 сек.
,
Добавить комментарий