Расстояние между столбами лэп: Сколько расстояние между опорами освещения, столбами фонарными

Сколько расстояние между опорами освещения, столбами фонарными

Казалось бы, наружное освещение можно организовать и без особого подхода, ведь главная задача обеспечить зоны с хорошей видимостью в темное время суток. Но для получения более эффективной осветительной системы необходимо соблюдать определенные правила и нормы расстановки опор наружного освещения.

Расстояние между фонарными столбами, опорами освещения

При установке фонарных столбов, осветительных опор в городе, вдоль дороги, расстояние между опоры наружного освещения города определяется исходя из количества осветительных фонарей установленных на опоре, их мощности и высоты установки светильника над дорогой. Расстояние между осветительными столбами железобетонными при установке фонарных столбов вдоль дорог определяется по этой же таблице.

Расчет расстояния между опорами освещения выполнен на основании норм освещенности дорог. Данный расчет позволяет ответить на вопросы: «Сколько метров между фонарными столбами освещения?», «Какое расстояние между фонарными столбами?», «Какой пролет между столбами освещения?».

 Для начала нужно уточнить, что дистанция между двумя ближайшими столбами называется пролетом. От соблюдения точного места установки опор освещения зависит эффективность светопередачи и безопасность.

Осветительные опоры различаются высотой и структурой, а также типом установленных уличных светильников и их количеством на одной опоре. Для получения эффективной подсветки схема расстановки опор освещения устроена таким образом, чтобы светильники формировали перекрещивающиеся световые конусы.

Отношение шага светильников к высоте их подвеса на улицах и дорогах всех категорий должно быть не более 5:1 при одностороннем, осевом и прямоугольном размещении светильников и не более 7:1 при шахматной схеме размещения.

В таблице даны максимальные расстояния между опорами освещения с учетом требуемой освещенности дорожного полотна.

Количество и тип светильникаВысота до светильника, метрШаг опор, мЛампа, ВтМощность освещения на 1 км, кВт
4 Х ЖКУ 50-400-001 20 (ВМО20, ОГКС 20) 65 ДНаТ 400 30
1 Х ЖКУ 30-250-001 12 36 ДНаТ 250 16,5
1 Х ЖКУ 40-250-001 12 36 ДНаТ 250 16,5
1 Х ЖКУ 50-250-001 12 36 ДНаТ 250 16,5
2 Х ЖКУ 40-250-001 12 31 ДНаТ 250
19,5
2 Х ЖКУ 50-150-001 11,3 35 ДНаТ 150 10
1 Х ЖКУ 30-250-001 12 39 ДНаТ 250 15,5
1 Х ЖКУ 40-250-001 12 33 ДНаТ 250 18
1 Х ЖКУ 50-250-001 12 45
ДНаТ 250
13,5
1 Х ЖКУ 40-250-001 12 36 ДНаТ 250 8
1 Х ЖКУ 30-150-001 12 39 ДНаТ 150 9
1 Х ЖКУ 40-250-001 12 39 ДНаТ 250 15,5

При проведении расчетов расстояния между фонарными стобами в парке, в городе, на дороге используют специальные таблицы, которые регламентируют правила освещения улиц и дорог.

На основании этих данных можно составить план с разметкой установки осветительных столбов. При использовании данных из таблиц упрощается процесс расчета необходимых параметров для каждого индивидуального объекта.

Необходимо знать, что наиболее приемлемым расстоянием между столбами для освещения и линий электропередач является расстояние в 35 метров.

Сколько метров между опорой и дорогой при выполнении электромонтажа столбов освещения

Электромонтаж светильников наружного освещения осуществляется на опорах уличного освещения, мачтах осветительных, столбах линий электропередач и других сооружениях. Чтобы осветить ту или иную часть территории улицы, требуется смонтировать систему наружного освещения согласно нормам установки электроопор.

Электромонтаж опоры наружного освещения требуется выполнять в соответствии с нормами ПУЭ «Правила устройства электроустановок».

Минимальное расстояние от края проезжей части дороги до опор освещения:

Установка опор уличного освещения вдоль дорог, улиц, площадей должна быть выполнена на расстоянии не менее 1 метра от бордюра дороги на магистральных улицах с интенсивным автомобильным движением, и осветительные опоры располагают на расстоянии не менее 0,6 метра от бордюра на других дорогах.

Это расстояние допускается уменьшить до 0,3 метра при отсутствии маршрутов движения городского транспорта и грузовых автомобилей, что допускают нормы.

При отсутствии бордюра расстояние от дороги до опоры освещения должно быть не менее 1,75 метра. На территориях предприятий расстояние от осветительной опоры до проезжей части принимается не менее 1 метра. Опоры освещения улиц и дорог допускается устанавливать на центральной разделительной полосе при ее ширине 5 м и более, а также на разделительной полосе шириной 4 м при наличии стационарного ограждения и размещения опор в створе этого ограждения.

Осветительная опора не должна находиться между пожарным гидрантом и проезжей частью улицы или дороги (запрещают нормы ПУЭ). Осветительные столбы на пересечениях и примыканиях улиц и дорог должны устанавливаться не ближе 1,5 м до начала закругления, не нарушая единого строя линии установки опор. 

На закруглениях улиц и дорог с радиусом в плане по оси проезжей части от 60 до 250 м металлические столбы освещения при их одностороннем расположении должны, как правило, размещаться по внешней стороне дороги, при невозможности размещения опор освещения по внешней стороне закругления допускается расположение фонарей по внутренней стороне с дополнительным уменьшением шага опор освещения.

В осветительных установках транспортных развязок и городских площадей допускается использовать высокие опоры (20 м и выше) при соответствующем технико-экономическом обосновании и обеспечении удобства обслуживания светильников.

Если подвод кабеля электроснабжение наружного освещения осуществлено воздушной линией электропередач, то расстояние от опоры освещения до балконов, террас и окон жилых домов должно быть не менее 1 метра.

Расстояние между опорами ЛЭП от 1 кВ до 500 кВ

Правила установки опор ЛЭП. Для обеспечения нормальной работы и безопасного обслуживания ВЛ расстояния между опорами соседними, проводами и землей, фазами ВЛ должны соответствовать нормам, установленным ПУЭ. Расстояние между соседними опорами ЛЭП, двумя электрическими столбами называют пролетом. Опоры линий электропередач – металлические или бетонные конструкции, предназначенные для поддерживания проводов ВЛ на необходимой высоте над землей, по которым передается электрический ток.

Ниже в таблице представлены требования, которым нужно следовать при установке опоры ЛЭП (габаритные и монтажные расстояния линии, шаг установки столбов воздушных линий электропередач, сколько метров от провода до земли, расстояние между фазами ВЛ), необходимые условия, которые должны быть выполнены при монтаже воздушных линий электропередач.

Стандартное расстояние между электрическими столбами

Теперь вы узнаете, какое расстояние между опорами ЛЭП различного напряжения линии электропередач, т.е. сколько метров между столбами должно быть. Расстояние между опорами (пролеты) составляет 35-45 м (максимальное по нормам 50 м) для напряжения до 1000 В и около 60 м для напряжения 6-10 кВ. Все расчеты расстояний между опорами ВЛ 0,4 кв, пролет между электроопорами ВЛ 1кВ,  ВЛ 6кв, электрическими столбами ВЛ 6-10кВ, ВЛ 10 кВ, ВЛ 35кВ, расстояние между проводами ВЛ 110кВ, ВЛ 220кВ, расстояние между столбами высоковольной ЛЭП ВЛ 330кВ, ВЛ 500кВ, ВЛ 750кВ сведены в расчетную таблицу.

ЛЭП, кВ
Расстояние между проводами ЛЭП, м
Расстояние между опорами ЛЭП, м Высота опоры ВЛ, м Расстояние от провода ЛЭП до земли, м
0,4-1 кВ 0,5 40-50 8-9 6-7
6-10 кВ 1 50-80 10 6-7
35 кВ 3 150-200 12 6-7
110 кВ 4-5 170-250 13-14 6-7
150 кВ 5,5 200-280 15-16 7-8
220 кВ 7 250-350 25-30 7-8
330 кВ 9 300-400 25-30 7,5-8
500 кВ 10-12 350-450 25-30 8
750 кВ 14-16 450-750 30-41 10-12
1150 кВ 12-19 33-54 14,5-17,5

: Инженерные системы загородного дома.

Газ. Электричество. :: BlogStroiki

     Вопрос: В мое отсутствие за забором моего дачного участка было установлено два столба ЛЭП на расстоянии примерно 15 м друг от друга. Какое минимальное расстояние должно быть? Для справки: это единственные два столба на 8 участков. Могу ли я поднять вопрос о демонтаже одного из столбов?

     Ответ: Одними из важнейших характеристик воздушных линий электропередачи являются  длина пролета линии – расстояние между соседними опорами, наибольшая стрела провеса провода в пролете и наименьшее допустимое расстояние от низшей точки провода до земли.

     Эти конструктивные параметры воздушной ЛЭП зависят от номинального напряжения линии, от рельефа и климатических условий местности, а также от технико-экономических требований. Так допустимое расстояние от низшей точки провода до земли составляет в ненаселенной местности 5÷7 м, а в населенном пункте 6÷8 м.

    Сооружение воздушных линий должно вестись обязательно в соответствии с проектом. Трассу прокладки уточняют на месте с представителями заинтересованных организаций, внося при необходимости изменения в основной проект и в проект организации работ. На местности производят разбивку трассы, для этого измеряют расстояние между соседними, угловыми или анкерными опорами и разбивают на равные участки, близкие к принятой для данной линии длине пролета, которая не должна превышать 40÷45м. Затем размечают на местности места промежуточных опор, забивая колышки строго по прямой линии.

     Расчет длины пролета ответвления от воздушной линии к вводу в дом должен осуществляется в гололедном режиме для двух случаев направления ветра: вдоль воздушной линии электропередачи и под углом 90°. При этом в обоих случаях следует учитывать реакцию натяжения проводов ответвления при отклонении верха опоры. В основном расстояние между опорами не должна превышать 25м, если больше – необходимо устанавливать промежуточную опору.

Хотелось бы конечно узнать ,какие именно столбы и на какое напряжение они рассчитаны. Из вашей информации ясно,что столбы установлены с нарушением проекта, обращайтесь в местный Энергонадзор с заявлением о проверке проекта электрификации ваших участков.

Добавлено: 19.08.2013 09:28

какое должно быть и от чего зависит

Расчёт расстояния между столбами освещения осуществляется на основании действующих стандартов и инструкций. При проектировании учитываются такие факторы, как тип местности, загруженность освещаемого участка людьми и транспортом, архитектурные особенности, требования относительно безопасности и т. д. Правильно организованное освещение позволяет уменьшить показатели аварийности, обеспечить безопасность и комфорт участников движения, сократить уровень преступности, а также добиться оптимального расхода электроэнергии.

Общая информация

Расстояние между двумя соседними опорами освещения называется пролётом. Его размер зависит от таких основных факторов, как:

  • тип освещаемой зоны;
  • высота опор;
  • мощность источников света;
  • их тип и конфигурация;
  • расположение опор относительно освещаемой зоны;
  • особенности рельефа местности.

Например, если в современных системах уличного освещения используются LED технологии, то при расчёте делается поправка на потребляемую мощность и интенсивность излучаемого света. Эти параметры отличаются, если применяются газоразрядные лампы и лампы накаливания. В частности, светодиодные источники света обладают более высокой эффективностью. Грубо говоря, дают больше света, потребляя меньше электроэнергии.

Что касается типа освещаемой зоны и расстояния между опорами, то в этом плане оно рассчитывается, исходя из требований освещённости. Найти их можно в документе СН 541-82. Инструкция по проектированию наружного освещения городов, посёлков и сельских населённых пунктов. К примеру, на оживлённых дорогах требуется более интенсивное освещение, чем на улицах местного значения с низким количеством проезжающего транспорта и передвигающихся людей.

Какие бывают опоры освещения

Классификация опор освещения и требования к их исполнению представлены в стандарте ГОСТ 32947-2014. Дороги автомобильные общего пользования. Опоры стационарного электрического освещения. Технические требования. В частности, этим документом регламентируются особенности эксплуатации опор в зависимости от температурных условий, сейсмической активности, а также в агрессивной среде, влияющей на ресурс железобетонных конструкций.

Согласно стандарту опоры для организации освещения могут быть:

  • металлические;
  • железобетонные;
  • композитные.

Металлические опоры — изготавливаются из листовой стали, и предназначены для установки в регионах, где минимальная годовая температура не опускается ниже -40°C. В зависимости от их длины и диаметра конструкции чаще всего собираются из одного, двух или трёх звеньев, соединяемых сваркой. В особых случаях используются опоры, состоящие из четырёх, пяти и более звеньев.

По назначению металлические опоры освещения делятся на силовые и не силовые. В первом случае конструкция используется как для установки осветительной техники, так и для крепления различных проводов — электрических, коммуникационных. Соответственно, не силовые опоры выполняются исключительно для монтажа освещения.

Металлические опоры классифицируются также в зависимости от их продольной формы и конфигурации поперечного сечения. По первому признаку они могут быть цилиндрической формы, или же конической с сужением к верхней части. В поперечнике опоры из металла могут быть либо круглыми, либо многогранными. Гранёные столбы делаются исключительно конической продольной формы.

Кроме этого, металлические опоры классифицируются по способу установки на прямостоечные и фланцевые. Первый тип устанавливается на месте методом бетонирования. Второй — крепится на предварительно забетонированные фланцы.

Железобетонные опоры — изготавливаются из бетона методом литья с применением армирования. Преимущественно изготавливаются для организации освещения в регионах с минимальными температурами до -55°C, а также в районах, где сейсмическая активность достигает 7 баллов. Железобетонные опоры также более устойчивы к ветровым и гололёдным нагрузкам, чем металлические.

По способу установки ничем не отличаются от металлических, и бывают двух типов — прямостоечные и фланцевые. Однако по продольной форме и конфигурации поперечного сечения имеют намного больше вариантов исполнения. В том числе, они могут быть круглыми, пирамидальными, призматическими, коническими.

Композитные опоры — изготавливаются из двух и более компонентов, чаще с применением стеклопластика. Отличаются многообразием форм и конфигураций, долговечностью, стойкостью к коррозионным нагрузкам и другими преимуществами. По назначению могут быть как силовыми, так и не силовыми. По способу крепления — аналогично с металлическими и железобетонными — прямостоечные и фланцевые.

Принципы организации уличного освещения

Основной фактор, который согласно СНиП влияет на расстояние между двумя столбами освещения — это пересечение двух соседних конусов света. Осветительный конус — это условный пучок света, который излучается источником, и падает на освещаемую территорию. При расчёте расстояния между опорами два соседних пучка света должны в итоге пересекаться таким образом, чтобы в зоне их действия минимальный уровень освещённости был не ниже установленных требований.

Осветительный конус с увеличением высоты опоры сильнее расширяется, обеспечивая освещение большей площади. Однако, следует учитывать, что одновременно с этим слабеет интенсивность освещение территории. Регулировать все эти параметры можно несколькими способами. В том числе:

  • путём подбора мощности и типа осветительных приборов;
  • изменением высоты опор;
  • добавлением дополнительных источников света на каждую опору;
  • подбором оптимального расстояния между двумя соседними опорами.

Кроме того, при расчёте расстояния между столбами освещения на трассах, например, учитывается ряд других, второстепенных факторов:

  • высота подвеса фонарей;
  • вылет светильника от края дороги;
  • ширина дорожного полотна;
  • угол наклона лицевой части светильника относительно освещаемой территории;
  • конфигурация дороги и особенности организации движения на ней.

Также при определении расстояния между фонарными столбами учитывается их оптимальное соотношение к высоте. Этот параметр сильно зависит от конфигурации расстановки опор, которая может быть шахматной, односторонней и осевой. Шахматный порядок установки опор — это когда каждая следующая располагается на противоположной стороне улицы или дороги. При такой конфигурации оптимальным соотношением пролёта и высоты столба является 7:1.

При одностороннем и осевом расположении опор рекомендуемое соотношение составляет 5:1. Одностороннее расположение — это когда все опоры, световые конусы которых принимаются в расчёт интенсивности освещения, находятся с какой-либо одной стороны дороги. Осевое расположение — это когда опоры устанавливаются на разделительной полосе, а освещённость отдельно рассчитывается для правой и левой стороны дороги.

Расстояние между опорами для разных типов освещаемых зон

Стандартное расстояние между столбами освещения на трассе или в городе может варьироваться от 39 до 65 метров. Пролёт рассчитывается индивидуально в зависимости от факторов, описанных выше. Кроме того, расстояние может корректироваться в случае, если основным назначением опор является монтаж силовых линий электропередачи.

Кроме того, на трассах и в городах учитывается соблюдение следующих норм:

  • на трассах расстояние от опоры освещения до дороги должно быть не менее 1 метра;
  • для городских дорог — не менее 0,5 метра;
  • при осевом расположении опор ширина разделительной полосы должна быть не менее 5 метров;
  • при организации освещения дорог вблизи жилых домов, воздушные линии электропередачи не должны быть ближе, чем 1 метр к окнам и балконам.

Расстояние между фонарями уличного освещения в парках, как правило, подбирается, исходя из требуемой функциональности. При выборе опор и источников света добиваются освещения, не ниже 5 люкс. В зонах, где проложены дорожки для велосипедистов, расчёту освещения уделяют особое внимание. В целом, расстояние между фонарями в парках варьируется в очень широком диапазоне, зависит от назначения, требуемой функциональности, а также учитывается наличие элементов декора (фонтанов, например) и выделенных зон.

Расстояние между фонарными столбами во дворах определяется индивидуально в зависимости от их конфигурации. К примеру, высота устанавливаемых опор зависит от того, возможно ли обеспечить доступ к ним подъёмной техники для обслуживания. Если нет, то высота столбов будет не более 4 метров, и в соответствии с этим рассчитываются пролёты.

Заключение

Расстояние между опорами освещения называется пролётом. Он рассчитывается на основании множества факторов. Основные — это требования к освещённости территории того или иного типа, высота опор, конфигурация их расположения, используемые источники света. Цели правильного расчёта пролётов — обеспечение безопасности, улучшение видимости в тёмное время суток, повышение комфортабельности территории, снижение преступности и максимально эффективное использование энергоресурсов.

Воздушные линии электропередачи напряжением до 10 кВ

Электрические сети, расположенные на открытых территориях вне зданий, часто выполняют воздушными линиями (ВЛ). За длину пролета ВЛ на местности принимают горизонтальное расстояние между центрами двух смежных опор. Анкерным участком называют сумму длин пролетов между опорами анкерного типа. Под стрелой провеса проводов при одинаковой высоте точек подвеса подразумевают вертикальное расстояние между линией, соединяющей точки подвеса провода, и низшей точкой провода. За габарит линии Н принимают наименьшее расстояние по вертикали при наибольшем провисании проводов до уровня земли или пересекаемых сооружений.
Углом поворота трассы линии называют угол между направлениями линии в смежных пролетах. Под тяжением провода понимают усилие, направленное по оси провода. Механическое напряжение провода получают делением тяжения на площадь поперечного сечения провода.

Основные характеристики линии в пролете

Промежуточные опоры устанавливают на прямых участках трассы ВЛ. Эти опоры в нормальных режимах работы не должны воспринимать усилий, направленных вдоль ВЛ.
Угловые опоры устанавливают в местах изменения направления трассы ВЛ. Эти опоры при нормальных режимах работы должны воспринимать слагающую тяжения проводов смежных пролетов.
Анкерные опоры устанавливают на пересечениях с различными сооружениями, а также в местах изменения количества, марок и сечений проводов. Эти опоры должны воспринимать в нормальных режимах работы усилия от разности тяжения проводов, направленные вдоль ВЛ. Анкерные опоры должны иметь жесткую конструкцию.
Концевые опоры устанавливают в начале и конце ВЛ, а также в местах, ограничивающих кабельные вставки. Они являются опорами анкерного типа и должны воспринимать в нормальных режимах работы ВЛ одностороннее тяжение проводов.
Ответвительные опоры устанавливают в местах ответвления от ВЛ.
Перекрестные опоры устанавливают в местах пересечения ВЛ двух направлений.
Промежуточный пролет — это расстояние по горизонтали между двумя смежными промежуточными опорами. Как правило, эти пролеты на ВЛ до 1 кВ колеблются в пределах 30—50 м, а на ВЛ выше 1 кВ —100—250 м и более.
Воздушные линии имеют следующие конструктивные элементы: провода, опоры, изоляторы, арматуру для крепления проводов на изоляторах и изоляторов на опорах. Воздушные линии бывают одно- и двухцепные. Под одной цепью понимают три провода одной трехфазной линии или два провода одной однофазной линии. Для воздушных линий напряжением до 10 кВ применяют алюминиевые, сталеалюминиевые и стальные провода. Опоры для ВЛ напряжением до 10 кВ изготовляют из дерева и железобетона. Деревянные опоры просты в изготовлении и дешевы, но недолговечны из-за гниения древесины. Железобетонные опоры дороже, но прочнее.
Деревянные промежуточные (рис.   а) и угловые анкерные (рис.   б) опоры широко используют при сооружении ВЛ в I; II и III климатических районах по гололеду. Вертикальные расстояния между проводами на этих ВЛ принимают 400 мм.

Деревянные промежуточные опоры ВЛ (л) и угловые анкерные (б)

В IV климатическом районе по гололеду расстояние между проводами на ВЛ, сооруженных с использованием этих опор, должно быть 600 мм. При изготовлении деталей деревянных опор применяют лесоматериалы хвойных пород. Основные типы железобетонных опор, применяемых на ВЛ 6—10 кВ, приведены на рис.   (д- г).
Железобетонные опоры изготовляют вибрационными или центрифугированными. Вибрационные опоры могут быть круглой, прямоугольной или двутавровой формы. Стальная арматура железобетонных опор может быть ненапряженной, напряженной и частично напряженной.
Промежуточные опоры выполняют одностоечными с горизонтальным расположением проводов, укрепленных на штыревых изоляторах ШС-10. Анкерные, угловые, концевые, ответвительные опоры конструируют из стоек промежуточных опор. Детали крепления и оттяжки применяют металлические. Опоры рассчитаны на подвеску проводов марок А25—А70, АС 16—АС50 и ПС25. Высота штыря принята увеличенной до 175 мм. Штыри заземляют приваркой к выпускам арматуры из железобетонной траверсы.
На ВЛ до 1 кВ применяют одно- и многопроволочные провода; применение расплетенных проводов не допускается. Воздушные линии выше 1 кВ выполняют по условиям механической прочности, как правило, многопроволочными проводами.


Железобетонные опоры BЛ 6—10 кВ: — промежуточная П-10; б — анкерные А-10; в — концевая КА-10; г — угловая для угла 90°


Штыревые изоляторы: ШС-6 и ШС-10; в — ШФ- 10В; г — ШФ-10Г для ВЛ-10 кВ
На ВЛ до 1 кВ по условиям механической прочности сечение проводов должно быть не менее: алюминиевых —16 мм2; сталеалюминиевых и биметаллических — 10 мм2; стальных многопроволочных — 25 мм2; для стальных однопроволочных диаметр должен быть не менее 4 мм.
Для ответвлений от ВЛ до 1 кВ к вводам в здания можно применять алюминиевые провода и из его сплавов при пролетах до 25 м сечением не менее 16 мм2; стальные и биметаллические при пролетах до 10 м — диаметром не менее 3 мм.
На ВЛ до 10 кВ широко применяют штыревые изоляторы (рис. а — г).
Изоляторы доставляют на монтаж в решетчатых ящиках. Отбраковку изоляторов производят визуально перед отправкой их на трассу. Предприятие-изготовитель снабжает каждую партию изоляторов документом, удостоверяющим их качество.

Какое должно быть расстояние между столбами электропередач

Главная » Разное » Какое должно быть расстояние между столбами электропередач

Расстояние между столбами линии электропередач в населенном пункте :: Инженерные системы загородного дома.Газ.Электричество. :

     Вопрос: В мое отсутствие за забором моего дачного участка было установлено два столба ЛЭП на расстоянии примерно 15 м друг от друга. Какое минимальное расстояние должно быть? Для справки: это единственные два столба на 8 участков. Могу ли я поднять вопрос о демонтаже одного из столбов?

     Ответ: Одними из важнейших характеристик воздушных линий электропередачи являются  длина пролета линии – расстояние между соседними опорами, наибольшая стрела провеса провода в пролете и наименьшее допустимое расстояние от низшей точки провода до земли.

     Эти конструктивные параметры воздушной ЛЭП зависят от номинального напряжения линии, от рельефа и климатических условий местности, а также от технико-экономических требований. Так допустимое расстояние от низшей точки провода до земли составляет в ненаселенной местности 5÷7 м, а в населенном пункте 6÷8 м.

    Сооружение воздушных линий должно вестись обязательно в соответствии с проектом. Трассу прокладки уточняют на месте с представителями заинтересованных организаций, внося при необходимости изменения в основной проект и в проект организации работ. На местности производят разбивку трассы, для этого измеряют расстояние между соседними, угловыми или анкерными опорами и разбивают на равные участки, близкие к принятой для данной линии длине пролета, которая не должна превышать 40÷45м. Затем размечают на местности места промежуточных опор, забивая колышки строго по прямой линии.

     Расчет длины пролета ответвления от воздушной линии к вводу в дом должен осуществляется в гололедном режиме для двух случаев направления ветра: вдоль воздушной линии электропередачи и под углом 90°. При этом в обоих случаях следует учитывать реакцию натяжения проводов ответвления при отклонении верха опоры. В основном расстояние между опорами не должна превышать 25м, если больше – необходимо устанавливать промежуточную опору.

Хотелось бы конечно узнать ,какие именно столбы и на какое напряжение они рассчитаны. Из вашей информации ясно,что столбы установлены с нарушением проекта, обращайтесь в местный Энергонадзор с заявлением о проверке проекта электрификации ваших участков.

Расстояние между столбами линии электропередач

Линия электропередачи – сооружение, состоящее из проводов, опор и вспомогательных устройств, предназначенное для передачи и распределения электрической энергии между потребителями. Являясь основным звеном энергосистемы, ЛЭП вместе с электрическими подстанциями образует электрические сети. Воздушные линии электропередач являются одним из основных звеньев современных энергосистем, по которым электрическая энергия по проводам, закрепленных на опорах с помощью изоляторов, передается на значительные расстояния. Напряжение в линии зависит от ее протяженности и передаваемой по ней мощности. Для воздушных ЛЭП применяют неизолированные провода различного типа в основном из алюминия со стальным сердечником, реже из меди, а стальные – главным образом при электрификации сельских местностей. Провода воздушных линий электропередачи должны обладать хорошей проводимостью, механической прочностью, стойкостью против атмосферных и химических воздействий. Для защиты воздушных линий электропередачи от атмосферных перенапряжений, возникающих при грозовых разрядах в линию или вблизи неё, применяют грозозащитные тросы или разрядники, которые устанавливают на ЛЭП с напряжением до 35 кв.

Одними из важнейших характеристик воздушных линий электропередачи являются  длина пролета линии – расстояние между соседними опорами, наибольшая стрела провеса провода в пролете и наименьшее допустимое расстояние от низшей точки провода до земли. Эти конструктивные параметры воздушной ЛЭП зависят от номинального напряжения линии, от рельефа и климатических условий местности, а также от технико-экономических требований. Так допустимое расстояние от низшей точки провода до земли составляет в ненаселенной местности 5÷7 м, а в населенной 6÷8 м.

Монтаж проводов высоковольтных линий до 1 кВ имеет ряд особенностей, связанных с относительно небольшим напряжением этих линий и их назначением. Такие линии устраивают преимущественно в сельской местности, небольших городах, жилых поселках, на территориях садоводческих товариществ и т.д. Линейное напряжение на них, как правило, равно 380В, а фазное – 220В. Такое сочетание напряжений позволяет питать фазным напряжением 220В коммунальные нагрузки, а силовые в необходимых случаях включать на напряжение 380В. Для выравнивания несимметрии токов, возникающих при неравномерности нагрузки, на воздушных линиях прокладывают дополнительный нулевой провод.

Сооружение воздушных линий должно вестись обязательно в соответствии с проектом. Трассу прокладки уточняют на месте с представителями заинтересованных организаций, внося при необходимости изменения в основной проект и в проект организации работ. На местности производят разбивку трассы, для этого измеряют расстояние между соседними, угловыми или анкерными опорами и разбивают на равные участки, близкие к принятой для данной линии длине пролета, которая не должна превышать 40÷45м. Затем размечают на местности места промежуточных опор, забивая колышки строго по прямой линии.

На воздушных линиях электропередачи применяют различные по конструкции опоры. Выбор того или иного материала для опор обусловливается его наличием в районе сооружения линии, а также экономическими соображениями.

Деревянные опоры, которые применяются для линий напряжением до 110кВ включительно, выполняют в основном из сосновых брёвен  и несколько реже из лиственницы. Основные достоинства этих опор – малая стоимость древесины и простота изготовления. Основной недостаток – разрушение древесины при воздействии окружающей среды, особенно интенсивно происходит загнивание в месте соприкосновения опоры с почвой. Пропитка древесины специальными антисептиками увеличивает срок её службы с 4÷6 до 15÷25 лет. Также для увеличения срока службы деревянную опору обычно выполняют не из целого бревна, а составной: из более длинной основной стойки и короткого стула или пасынка. Стул скрепляют с основной стойкой при помощи проволочного бандажа. Кроме того, широко применяются составные деревянные опоры с железобетонными стульями.

Железобетонные опоры выполняют различных конструкций, их достоинством является стойкость в отношении коррозии и воздействия химических реагентов, находящихся в воздухе.

Металлические опоры, которые собираются из отдельных элементов на сварке или посредством болтов,  выполняют из стали специальных марок. Для предотвращения окисления и коррозии поверхность металлических опор оцинковывают или периодически окрашивают специальными красками.

Срок службы железобетонных и металлических оцинкованных или периодически окрашиваемых опор достигает 50 лет и более. Однако стоимость металлических и железобетонных опор значительно превышает стоимость деревянных опор.

По своему назначению опоры подразделяются на анкерные, угловые и концевые опоры.

Анкерные опоры, которые устанавливаются на прямых участках трассы и для перехода через инженерные сооружения или естественные преграды, воспринимают продольную нагрузку от тяжения  проводов и тросов. Их конструкция отличается жесткостью и прочностью.

Угловые опоры, которые устанавливаются на углах поворота трассы ВЛ, при нормальных условиях воспринимают равнодействующую сил тяжения проводов и тросов смежных пролётов, направленную по биссектрисе угла, дополняющего угол поворота линии на 180°. При небольших углах поворота до 15÷30°, где нагрузки невелики, используют угловые промежуточные опоры. Если углы поворота больше, то применяют угловые анкерные опоры, имеющие более жёсткую конструкцию и анкерное крепление проводов.

Концевые опоры являются разновидностью анкерных и устанавливаются в конце или начале линии. При нормальных условиях работы воздушных линий они воспринимают нагрузку от одностороннего тяжения проводов и тросов.

Расчет длины пролета ответвления от воздушной линии к вводу в дом должен осуществляется в гололедном режиме для двух случаев направления ветра: вдоль воздушной линии электропередачи и под углом 90°. При этом в обоих случаях следует учитывать редукцию тяжения проводов ответвления при отклонении верха опоры. В основном расстояние между опорами не должна превышать 25м, если больше – необходимо устанавливать промежуточную опору.

Обсуждение вопроса на форуме:

Воздушные линии электропередачи напряжением до 10 кВ

Электрические сети, расположенные на открытых территориях вне зданий, часто выполняют воздушными линиями (ВЛ). За длину пролета ВЛ на местности принимают горизонтальное расстояние между центрами двух смежных опор. Анкерным участком называют сумму длин пролетов между опорами анкерного типа. Под стрелой провеса проводов при одинаковой высоте точек подвеса подразумевают вертикальное расстояние между линией, соединяющей точки подвеса провода, и низшей точкой провода. За габарит линии Н принимают наименьшее расстояние по вертикали при наибольшем провисании проводов до уровня земли или пересекаемых сооружений.

Углом поворота трассы линии называют угол между направлениями линии в смежных пролетах. Под тяжением провода понимают усилие, направленное по оси провода. Механическое напряжение провода получают делением тяжения на площадь поперечного сечения провода.

Основные характеристики линии в пролете

Промежуточные опоры устанавливают на прямых участках трассы ВЛ. Эти опоры в нормальных режимах работы не должны воспринимать усилий, направленных вдоль ВЛ.

Угловые опоры устанавливают в местах изменения направления трассы ВЛ. Эти опоры при нормальных режимах работы должны воспринимать слагающую тяжения проводов смежных пролетов.

Анкерные опоры устанавливают на пересечениях с различными сооружениями, а также в местах изменения количества, марок и сечений проводов. Эти опоры должны воспринимать в нормальных режимах работы усилия от разности тяжения проводов, направленные вдоль ВЛ. Анкерные опоры должны иметь жесткую конструкцию.

Концевые опоры устанавливают в начале и конце ВЛ, а также в местах, ограничивающих кабельные вставки. Они являются опорами анкерного типа и должны воспринимать в нормальных режимах работы ВЛ одностороннее тяжение проводов.

Ответвительные опоры устанавливают в местах ответвления от ВЛ.

Перекрестные опоры устанавливают в местах пересечения ВЛ двух направлений.

Промежуточный пролет — это расстояние по горизонтали между двумя смежными промежуточными опорами. Как правило, эти пролеты на ВЛ до 1 кВ колеблются в пределах 30—50 м, а на ВЛ выше 1 кВ —100—250 м и более.

Воздушные линии имеют следующие конструктивные элементы: провода, опоры, изоляторы, арматуру для крепления проводов на изоляторах и изоляторов на опорах. Воздушные линии бывают одно- и двухцепные. Под одной цепью понимают три провода одной трехфазной линии или два провода одной однофазной линии. Для воздушных линий напряжением до 10 кВ применяют алюминиевые, сталеалюминиевые и стальные провода. Опоры для ВЛ напряжением до 10 кВ изготовляют из дерева и железобетона. Деревянные опоры просты в изготовлении и дешевы, но недолговечны из-за гниения древесины. Железобетонные опоры дороже, но прочнее.

Деревянные промежуточные (рис.   а) и угловые анкерные (рис.   б) опоры широко используют при сооружении ВЛ в I II и III климатических районах по гололеду. Вертикальные расстояния между проводами на этих ВЛ принимают 400 мм.

Деревянные промежуточные опоры ВЛ (л) и угловые анкерные (б)

В IV климатическом районе по гололеду расстояние между проводами на ВЛ, сооруженных с использованием этих опор, должно быть 600 мм. При изготовлении деталей деревянных опор применяют лесоматериалы хвойных пород. Основные типы железобетонных опор, применяемых на ВЛ 6—10 кВ, приведены на рис.   (д- г).

Железобетонные опоры изготовляют вибрационными или центрифугированными. Вибрационные опоры могут быть круглой, прямоугольной или двутавровой формы. Стальная арматура железобетонных опор может быть ненапряженной, напряженной и частично напряженной.

Промежуточные опоры выполняют одностоечными с горизонтальным расположением проводов, укрепленных на штыревых изоляторах ШС-10. Анкерные, угловые, концевые, ответвительные опоры конструируют из стоек промежуточных опор. Детали крепления и оттяжки применяют металлические. Опоры рассчитаны на подвеску проводов марок А25—А70, АС 16—АС50 и ПС25. Высота штыря принята увеличенной до 175 мм. Штыри заземляют приваркой к выпускам арматуры из железобетонной траверсы.

На ВЛ до 1 кВ применяют одно- и многопроволочные провода применение расплетенных проводов не допускается. Воздушные линии выше 1 кВ выполняют по условиям механической прочности, как правило, многопроволочными проводами.

Железобетонные опоры BЛ 6—10 кВ: — промежуточная П-10 б — анкерные А-10 в — концевая КА-10 г — угловая для угла 90°

Штыревые изоляторы: ШС-6 и ШС-10 в — ШФ- 10В г — ШФ-10Г для ВЛ-10 кВ

На ВЛ до 1 кВ по условиям механической прочности сечение проводов должно быть не менее: алюминиевых —16 мм 2 сталеалюминиевых и биметаллических — 10 мм 2 стальных многопроволочных — 25 мм 2 для стальных однопроволочных диаметр должен быть не менее 4 мм.

Для ответвлений от ВЛ до 1 кВ к вводам в здания можно применять алюминиевые провода и из его сплавов при пролетах до 25 м сечением не менее 16 мм 2 стальные и биметаллические при пролетах до 10 м — диаметром не менее 3 мм.

На ВЛ до 10 кВ широко применяют штыревые изоляторы (рис. а — г).

Изоляторы доставляют на монтаж в решетчатых ящиках. Отбраковку изоляторов производят визуально перед отправкой их на трассу. Предприятие-изготовитель снабжает каждую партию изоляторов документом, удостоверяющим их качество.

Контакты

     Вопрос: В мое отсутствие за забором моего дачного участка было установлено два столба ЛЭП на расстоянии примерно 15 м друг от друга. Какое минимальное расстояние должно быть? Для справки: это единственные два столба на 8 участков. Могу ли я поднять вопрос о демонтаже одного из столбов?

     Ответ: Одними из важнейших характеристик воздушных линий электропередачи являются  длина пролета линии – расстояние между соседними опорами, наибольшая стрела провеса провода в пролете и наименьшее допустимое расстояние от низшей точки провода до земли.

Эти конструктивные параметры воздушной ЛЭП зависят от номинального напряжения линии, от рельефа и климатических условий местности, а также от технико-экономических требований. Так допустимое расстояние от низшей точки провода до земли составляет в ненаселенной местности 5÷7 м, а в населенном пункте 6÷8 м.

    Сооружение воздушных линий должно вестись обязательно в соответствии с проектом. Трассу прокладки уточняют на месте с представителями заинтересованных организаций, внося при необходимости изменения в основной проект и в проект организации работ. На местности производят разбивку трассы, для этого измеряют расстояние между соседними, угловыми или анкерными опорами и разбивают на равные участки, близкие к принятой для данной линии длине пролета, которая не должна превышать 40÷45м. Затем размечают на местности места промежуточных опор, забивая колышки строго по прямой линии.

     Расчет длины пролета ответвления от воздушной линии к вводу в дом должен осуществляется в гололедном режиме для двух случаев направления ветра: вдоль воздушной линии электропередачи и под углом 90°. При этом в обоих случаях следует учитывать реакцию натяжения проводов ответвления при отклонении верха опоры. В основном расстояние между опорами не должна превышать 25м, если больше – необходимо устанавливать промежуточную опору.

Хотелось бы конечно узнать ,какие именно столбы и на какое напряжение они рассчитаны. Из вашей информации ясно,что столбы установлены с нарушением проекта, обращайтесь в местный Энергонадзор с заявлением о проверке проекта электрификации ваших участков.

Источники: http://blogstroiki.ru/vopros-otvet/kakovo-minimalnoe-rasstoyanie-mezhdu-elektricheskimi-stolbami-a-tak-zhe-gde-vozmozhno-raspolozhenie-poslednego-stolba-s-podporoj/, http://leg.co.ua/info/vl/vozdushnye-linii-elektroperedachi-napryazheniem-do-10-kv.html, http://umvs.kr.ua/rasstojanie-mezhdu-stolbami-linii-ehlektroperedach-v-naselennom-punkte

Комментариев пока нет!

Какое должно быть расстояние между фонарными столбами?

04.06.2017

Реализация уличного освещения намного сложнее бытового. Это связано с существованием множества правил и требований. В первую очередь, освещение должно быть как можно более функциональным, а приборы, в нем задействованные, иметь длительный срок службы. При несоблюдении всех норм уличное освещение не будет эффективным. Для его успешной реализации самым важным моментом считается расчет интервала между будущими столбами для светильников. Расстановка осветительных опор в центре города намного проще, нежели на его окраинах или в частном секторе, не говоря уже о деревнях.

Основные принципы уличного освещения

Для обеспечения улиц светом в темное время суток на протяжении долгих лет применяются столбы. За все эти годы наиболее применяемыми материалами для их изготовления стали дерево, бетон, железо и железобетон. Это связано с их прочностью и долголетием, особенно это относится к железобетону. В наличии постоянного света в темное время суток нуждается множество различных участков как жилых, так и нежилых районов населенного пункта, в частности:

  • уличные тротуары и дорожки для пешеходов;
  • проезжие части для автомобилей и магистральные дороги;
  • территории, на которых расположены различные учреждения;
  • заправочные станции;
  • автомобильные стоянки и т. д.
Качественное уличное освещение

Хотя расстояние между столбами освещения и является важнейшим моментом при выполнении монтажа, все равно необходимо знать и понимать суть и предназначение самих конструкций для светильников. Она имеет две составные части:

  • Главная часть опоры представляет собой столб, который может быть разным по высоте. Это связано с его функцией и местом расположения. Обычно при их установке в деревне или городе высота подбирается таким образом, что падающий свет образует на земле своеобразные конусы, которые должны пересекаться.
  • Источник, воспроизводящий световой поток. Это оборудование устанавливается сверху осветительных столбов и может быть разной формы, мощности и т. д. Этот фактор зависит от места размещения линии освещения. Например, при обустройстве иллюминации автомобильных дорог требуется использование светильников с мощными лампами, что, соответственно, увеличивает размер самого осветительного прибора. Для освещения парков отдыха, площадей и скверов можно использовать столбы меньшей высоты и декоративные источники света.
Виды столбов для уличного освещения

Очень часто столбы с фонарями выполняют не только осветительную функцию, но и являются одновременно опорами для удержания различных проводов и линий электропередачи. В таком случае расстояние между ними может быть увеличено.

Расстояние между фонарными столбами

Для начала нужно уточнить, что дистанция между двумя ближайшими столбами называется пролетом. Для контроля этих расстояний существуют определенные нормы и требования, которые указаны в СНиП и ГОСТ.

Выбрать, какое расстояние будет между опорами уличного освещения в городской черте, в деревенской местности или на частной территории иногда бывает затруднительно. Однако для каждого случая есть четкие пункты, прописанные в СНиП. Их реализация может также быть разной. При соблюдении правил, указанных в регламентирующей документации, дистанция между опорами освещения должна рассчитываться исходя из следующих параметров:

  • необходимый уровень освещенности для определенной территории, где требуется установка фонарей. Для городской местности и деревни эти параметры будут существенно различаться;
  • количество установленных светильников на столбе;
  • мощность и тип осветительного прибора;
  • высота установки фонарей на опорах;
  • вид используемых в светильниках ламп, они могут быть светодиодными, накаливания, люминесцентными и т. д.
Опоры с двумя светильниками

Необходимо знать, что наиболее приемлемым расстоянием между столбами для освещения и линий электропередач является расстояние в 35 метров.

Второстепенные параметры при монтаже опор

При монтаже столбов под освещение нужно знать не только дистанцию между соседними опорами, но и то, сколько метров должно быть до элементов дорожного и архитектурного значения по всей протяженности улиц, дорожного покрытия и площадей. Поэтому также необходимо учитывать прописанные нормы в регламентирующей документации перед началом планирования размещения осветительных столбов. К этим нормам можно отнести следующие нюансы:

  • При установке столбов вдоль дорог магистрального значения расстояние от столба до бордюра не должно быть меньше 1 метра. Для всех остальных дорог эта норма составляет 0,5 метра. Разрешена установка осветительных опор по разделительной полосе, ширина которой не менее 5 метров.
  • В тех случаях, когда вдоль дороги отсутствует бордюр, дистанция должна составлять не менее 1,75 метра от опоры до дорожного покрытия.
  • Вдоль автомобильных дорог, на которых отсутствует движение крупногабаритных автомобилей, расстояние может составлять 0,3 метра.
  • При подводке электрического кабеля к светильникам с помощью воздушной ЛЭП дистанция от столбов до балконов и окон жилых домов не должна быть менее 1 метра.
Влияние высоты и расстояния на количество люкс

Регламентирующей документацией установлены специальные нормы интенсивности и загруженности уличного движения в черте города и на дорогах магистрального значения, составляющие 3 000 человек за один час. При превышении этого параметра средняя освещенность на этом участке должна составлять не менее 20 люкс. При снижении этого показателя до 1 000 человек уровень освещенности допускается до 15 люкс. В районах с проходимостью до 500 человек эти цифры могут равняться 8 пунктам. Что касается мест с дорожными развязками, мостами и городскими площадями, уровень освещенности достигает 25 люкс, а во дворах не менее четырех.

При соблюдении таких требований не всегда получается выполнить необходимое расстояние между столбами, на которых размещены уличные светильники. Ведь смещение опоры может сменить пропорциональность радиусов потока света, а следовательно, придется пересчитать дистанцию пролетов, чтобы те были одинаковыми.

В условиях городской местности высота осветительных столбов должна достигать 20 метров. Перед началом монтажа необходимо удостовериться в наличии специализированной техники и персонала для обслуживания данной линии освещения, а также обосновать с технической и экономической точек зрения необходимость такой высоты опор.

Расчет параметров размещения осветительных опор

Перед началом установки фонарных столбов требуется провести все необходимые расчеты и замеры, а именно:

  • наиболее приемлемая расстановка опор со светильниками с учетом дистанции их отдаления от близлежащих конструкций и объектов непосредственно каждой единицы линии освещения;
  • длина будущего пролета, рассчитанная от одного столба к другому.

В первом случае изменить расстояние расположения монтируемых опор не удастся, так как их установка выполняется без отклонений от установленных норм. А вот с определением длины пролетов возникают серьезные трудности, они могут немного смещаться на несколько метров. Это связано со следующими нюансами:

  • численность монтируемых светильников, размещенных на столбе;
  • мощность конкретно каждого осветительного прибора;
  • высота, на которой будут устанавливаться светильники.
Параметры для расчета расстояний между опорами освещения

При проведении расчетов и использовании специальных таблиц, которые регламентируют правила освещения улиц и дорог, можно составить план с разметкой установки осветительных столбов.

При использовании данных из таблиц упрощается процесс расчета необходимых параметров для каждого индивидуального объекта. Каждая линия освещения имеет свои особенности, что в итоге может повлиять на отклонение от установленных правил. Но во всяком случае монтаж опор для светильников в городской местности сводится к наиболее благоприятным 35 метрам между близстоящими столбами.

Важным нюансом для монтажа осветительных приборов является их шаг относительно высоты установки. Существует четыре типа размещения осветительных приборов:

  • одностороннее – шаг до 5:1;
  • прямоугольного вида и осевого – до 5:1;
  • шахматное – до 7:1.
Уличное освещение по разделительной полосе

При использовании приведенной таблицы необходимо знать, что указанные в ней данные относятся к максимальным значениям. Эти цифры опираются на утвержденные и нормированные параметры размещения опор со светильниками.

Польза от правильно проведенных расчетов

При правильном определении интервалов между столбами можно получить:

  • уменьшение аварийных ситуаций на автомобильных дорогах и безопасность перемещения пешеходов по тротуарам;
  • качественное освещение в ночное время суток;
  • отличную иллюминацию парков и площадей;
  • уменьшение уровня преступности.

Знание существующих требований по расстояниям между осветительными опорами может помочь проконтролировать монтажные работы на своем дачном участке либо при самостоятельных работах по установке фонарных столбов.

Максимальное расстояние между опорами ВЛ до 10 кВ :: Инженерные системы загородного дома.Газ.Электричество. :

                                                                                                                                                                                                                                                                                                        Вопрос: Какое максимальное расстояние между опорами ВЛ до 10 кВ допускается, не могу найти информацию в ПЭУ.

     Ответ: Максимальное расстояние между опорами воздушных линий электропередач устанавливается в зависимости от вида материала из которого изготавливаются опоры, высоты опоры, марки используемого провода и региона где эти опоры будут использоваться. В каждом регионе допускается разная толщина образования ледяной корки на проводах, а это тоже влияет на расстояние для установки опор. Расстояние между опорами в населенных пунктах несколько меньше чем вне населенных пунктов. 

Так для линий электропередач на 10кВ  минимальное расстояние между опорами с неизолированными проводниками  для разных ветровых нагрузок и толщиной корки облединения до 25 мм принимается : в населенных пунктах 45-72 метра, вне населенных пунктов-54-87 метров. Источник:

Установка опор ЛЭП — правила и технические требования

Опоры ЛЭП являют собой сооружение для удерживания проводов и определяется, как один из основных конструктивных элементов линий электропередач. Их правильная установка – это залог их длительной и безопасной эксплуатации, а также бесперебойного снабжения потребителей электричеством.

Этап проектирования

Существуют определенные правила установки столбов для электричества, первым этапом которой является проектирование. Учитываются все технические требования и сопутствующие факторы – тип опор, преимущества или недостатки грунта и специфика ландшафта местности в населенных пунктах, расстояние от жилья и прочие особенности.

Проектная часть оказывает важное значение на дальнейшие монтажные работы и в значительной мере предопределяет финансовые издержки. Так, например, необходимо выбрать тип столбов для электричества. Ведь правила установки деревянных опор ЛЭП имеют отличительные особенности от железобетонных столбов. Проводиться также расчет параметров для закладки фундамента, на котором будут проводиться монтаж опор.

Немаловажное значение имеет техническое оснащение монтажных работ, так как монтаж столбов для воздушных линий электропередач – процесс сложный. Требуется специализированная техника – для транспортировки конструкции на объект, перемещение и подъем опор, буровые механизмы и прочие механизированные устройства, обеспечивающие точность установки на всех этапах монтажных работ.

Процесс сборки и расчет расстояния

Процесс сборки и установки опорных сооружений, состоит из нескольких этапов:

  • выкладка стоек и одиночных элементов;
  • сбора столбов;
  • установка опоры в позицию, определённую проектом;
  • контрольная проверка всех расстояний и положений под технические требования;
  • закрепление опор.

Выкладку опор по стандартам проводят вдоль оси воздушных линий. Случаются исключения, когда требования диктуются ландшафтом местности, тогда при вертикальном подъеме опоры, первоначальную выкладку выполняют в положении поперек оси следования трассы воздушных линий электропередач.

Если установку проводят на косогорах, то выкладку опор проводят вдоль оси линий электропередач, так чтобы траверсы при подъеме были направлены на косогор. Для монтажа столбов ЛЭП, которые пересекаются с железнодорожным полотном или автомобильными трассами, а также водоемами, оврагами и сетями связи, выкладку осуществляют вдоль воздушных линий так, чтобы траверсы и тросостойки были направлены в сторону пересеченных объектов на местности. Расстояние между центральной точкой опоры и до точки пересечения с объектом, регламентировано не менее, чем 1,5 м от высоты столба.

Какое расстояние между опорами ЛЭП и объектом должно быть – высчитывается в каждом заданном случае. Очень важно в процессе установки учитывать также технические требования и дистанцию от подземного газопровода до опоры ЛЭП.

Регламентируют правила установки, и монтаж опор в частном секторе. Тогда учитываются плюсы и минусы не только местности, но и безопасное расстояние между столбами ЛЭП и жилыми объектами. Так, проводиться расчет расстояния до забора для проведения, например, электричества на даче.

Когда все расчетные и подготовительные работы окончены, можно приступать к закладке опор в фундамент. Однако, если контрольная проверка показала наличие отдельных элементов или самих опор с дефектами или повреждениями, то запрещено продолжать работы по установке столбов для линий электропередач, до полной замены опоры или устранения повреждений. От этого будет, в первую очередь, зависеть безопасность рабочего персонала и случайных людей.

Классификация по назначению

Различают несколько видов столбов ЛЭП, которые также определяют их установку на заданной местности:

  • промежуточные опоры – предназначены для монтажа на прямых трассах линий электропередач. Они поддерживают троса и провода и выдерживают определённую заданную нагрузку;
  • опоры с анкерным креплением проводов – отличаются крепкой конструкцией, которая преимущественна для применения в условиях пересечения воздушными линиями разных инженерных сооружений;
  • столбы угловые – установка данного вида опор осуществляется на объектах с поворотами на заданной трассе. Если угол поворота имеет небольшой градус (до 300), то применяют промежуточные угловые опоры, в ином случае используют столбы с анкерным креплением, которые выдерживают более жесткие нагрузки;
  • концевые столбы – это опоры с анкерным креплением, которые отличаются от обычных, способностью выдержать односторонне нагрузку при натяжении проводов. Устанавливают данный вид опор в конце линии электропередачи.

Существуют также разновидности опор ЛЭП со своей спецификой:

  • транспозиционные – применяют для изменения позиций проводов на воздушной трассе;
  • перекрестные – используют там, где пересекаются две и более линий электропередач;
  • столбы для ответвления – когда необходимо отвести ветку от общей магистральной линии;
  • противоветровые – используют при соответствующих погодных условиях местности, где выполняется установка, обладают более усиленными конструкциями.

Глубина установки опор ЛЭП 👷

Монтаж опор для прокладывания электричества происходит между домом потребителя и подстанцией. Выполняя эту работу самостоятельно необходимо выполнять рекомендации, указанные в ПУЭ и современные строительные нормы. Также важна правильная подготовка ямы для закапывания конструкции.

Нормативы по подготовке ямы для ЛЭП

Опоры ЛЭП, которые используется для подачи электроэнергии за городом могут производиться из:

  • железобетона;
  • деревянными;
  • изредка железными.

Согласно нормативам, чтобы подготовить яму для закапывания такой конструкции, необходимо задействовать машины для бурения, кроме некоторых редких случаев (небольшой объем работ или стесненные условия). В нормативах указан именно этот тип бурения, поскольку он обеспечивает высокую прочность. Но вырыть яму для установки одиночной опоры, которая подводит электросеть к дому, разрешается.

Размеры ямы для строительства опоры

Размер ямы зависит от длины конструкции и типа грунта. Также необходимо придать ей форму, которая упростит процесс установки опоры. Глубина должна быть такой, чтобы исключить опрокидывание, вывертывание почвы, и защитить от негативного воздействия ветра. Средний показатель глубины закапывания составляет 1,5-2 метра.

Для столбов промежуточного типа, что устанавливаются в цилиндрическую яму, применяется бурильная машина. В труднодоступном для работы техники месте, используют лопаты и готовят место вручную. Дистанция между опорами составляет минимум 2,5 метра в месте, к которому трудно попасть. На непроезжей части улицы и дорожки для прогулок его можно увеличить до 3,5 метров.

Выделяют несколько групп плотности. Первая включает супесь, влажный суглинок, песчаный, торфяной грунт и почву растительного слоя. Требования к глубине и размеру ямы будут такими:

  • длина до 8,5 метров – глубина не менее 1,8 метров;
  • длина 11-12 метров – глубина 2,15 м.
  • Грунты второй группы плотности – это влажная глина, суглинок, мелкий и средний гравий. Габариты ямы при этом составляют:
  • опора высотой до 8,5 метров – глубина 1,5 м;
  • опора в пределах11, 12 метров – глубина 1,8 м.
  • Грунты третьей группы включают среднетяжелую глину и суглинок. Нормативы для выкапывания ямы:
  • длина опоры составляет 8,5 метров – глубина не менее 1,35 м;
  • опора длиной от 11-12 метров – глубина минимум 1,6 м.

Грунты из четвертой группы по показателям плотности, предусматривают выкапывание резервуара 1,1 м для опоры длиной до 9,5 м. Но при выкапывании ямы учитывают расстояние между столбами. С его увеличением возрастает глубина резервуара.

Форма ямы для строительства

Метод создания ямы зависит на ее форму. Если задействуется бурильная техника, она будет цилиндрической. При ручной работе должен получиться ступенчатый профиль.

Яма, в которую будет проводиться установка подкоса для увеличения устойчивости опоры, имеет форму ступенек или длинной траншеи. Это важно, поскольку данная часть сети электропередачи обеспечивает поддержку главной опоре и устанавливается под небольшим углом. В некоторых случаях эти части закапываются и скрепляются ригелем под землей.

Подкос устанавливают на угловой опоре, угол составляет меньше 90°, но больше 20°. На концевой опоре могут дополнительно применяться оттяжки.

Процесс установки опор для абонентского подключения электросети

Состав работ по установке опоры ЛЭП включает транспортировку ее элементов, подготовку места, сборку и монтаж конструкции. При этом важно следить за тем, чтобы не повредить столбы. Они не должны подвергаться ударам. Запрещается разгружать путем сбрасывания и волочить по грунту.

Установка конструкции для ввода электричества в дом, проводится с правильной подготовкой скважины. Она должна быть глубже уровня промерзания грунта. Бурить яму можно вручную ямобуром или использовать БКМ. Сейчас для использования доступен бензобур, который упрощает задачу и помогает сэкономить время. При необходимости на дно высыпают щебень. После столб кладут на ступеньки так, чтобы торец упирался в выкопанную яму.

Канаты крепят на 2/3 опоры и с их помощью начинают поднимать изделие. Необходимо тянуть в соответствии с линией укладки. Чтобы зафиксировать подъем канаты растягивают в сторону. В вертикальном положении столб закрепляется с помощью распор. После можно закапывать яму, тщательно утрамбовывая грунт. Возле столба нужно насыпать почвы, чтобы получился небольшой холм высотой до 200 мм. Теперь опора считается установленной.

Звоните 8 863 268-16-02 и наши менеджеры ответят на все Ваши вопросы.

РАССТОЯНИЕ И ЗАЗОРЫ ДЛЯ ЛИНИЙ ПЕРЕДАЧИ СИЛЫ | ПРОЕКТИРОВАНИЕ ТРАНСМИССИОННЫХ ЛИНИЙ и СТУПИЦА ЭЛЕКТРОТЕХНИКИ

Из соображений безопасности силовые проводники вдоль трассы линии электропередачи должны иметь необходимые расстояния от земли на открытой местности, на национальных автомагистралях, реках, железных дорогах, путях, линиях связи и других существующих линиях электропередачи.

Дорожный просвет для различных напряжений, которые обычно применяются:

5,66 кВ 6,5 м при температуре провода +650 C

6.132 кВ 7,0 м при температуре провода +650 C

7,220 кВ 7,5 м при температуре провода +800 C

Минимальные зазоры от проводов над реками, которые не являются судоходными, должны быть на 3,05 м выше максимального уровня паводка.

Минимальные зазоры между проводниками линии электропередачи и телекоммуникационного кабеля должны составлять:

132 кВ 2,44 м
220 кВ 2,74 м
400 кВ 4,88 м

Минимальное расстояние между линиями электропередач должно составлять:

132 кВ 2 .75 м
220 кВ 4,55 м
400 кВ 6,00 м

Расстояние между проводниками определяется соображениями, частично электрическими и частично механическими. Обычно проводники будут качаться синхронно (по фазе) с ветром, но при больших пролетах и ​​небольшом размере проводников всегда существует вероятность несинхронного качания проводников, а размер проводника и максимальный прогиб в центре span — это факторы, которые следует учитывать при определении фазового расстояния, на котором они должны быть натянуты.Как показывает практика, минимальное расстояние между проводниками по горизонтали должно быть не менее 1% от длины пролета, чтобы минимизировать риск контакта фаз друг с другом во время качания.

Существует ряд используемых эмпирических формул, выведенных из интервала, которые успешно работают на практике:

NESC, формула США
Горизонтальный интервал в см,

Где A = 0,762 см на напряжение линии кВ
S = провисание см, и
L = длина гирлянды изолятора в см
Шведская формула
Расстояние по горизонтали в см,

Где S = прогиб в см и
E = напряжение в сети в кВ
Французская формула
Расстояние по горизонтали в см,

Где S = Провисание в см
L = длина гирлянды изоляторов в см
E = линейное напряжение в кВ

Верхний зазор башни

Верхний зазор башни — это вертикальный зазор между заземляющим проводом и верхним проводником, который регулируется углом экранирования.Угол экрана варьируется от 250 до 300, в зависимости от конфигурации проводников. Расстояние от башни до верха следует принимать 1,5 и 2,25 м для 132 кВ и 220 кВ соответственно для поворота 00.

Близость к воздушным линиям электропередач и детский лейкоз: объединенный международный анализ

  • 1.

    Хейфец, Л. и Свансон, Дж. Детский лейкоз и крайне низкочастотные магнитные поля: критическая оценка эпидемиологических данных с использованием модели Hill’s. В: М. Роосли (ред.). Эпидемиология электромагнитных полей (стр. 141–160. CRC Press, США, 2014).

    Google Scholar

  • 2.

    Ahlbom, A. et al. Объединенный анализ магнитных полей и детской лейкемии. Br. J. Cancer 83 , 692–698 (2000).

    CAS PubMed PubMed Central Статья Google Scholar

  • 3.

    Гренланд, С., Шеппард, А.Р., Кауне, В. Т., Пул, К. и Келш, М. А. Объединенный анализ магнитных полей, проводных кодов и детской лейкемии. группа исследования детской лейкемии-ЭМП. Эпидемиология 11 , 624–634 (2000).

    CAS PubMed Статья Google Scholar

  • 4.

    Хейфец Л. и др. Объединенный анализ недавних исследований магнитных полей и детской лейкемии. Br. J. Cancer 103 , 1128–1135 (2010).

    CAS PubMed PubMed Central Статья Google Scholar

  • 5.

    Schuz, J. et al. Ночное воздействие электромагнитных полей и детский лейкоз: расширенный объединенный анализ. Am. J. Epidemiol 166 , 263–269 (2007).

    PubMed Статья Google Scholar

  • 6.

    Vergara, X. P. et al. Оценка магнитных полей домов вблизи линий электропередачи в исследовании линий электропередач в Калифорнии. Environ. Res. 140 , 514–523 (2015).

    CAS PubMed PubMed Central Статья Google Scholar

  • 7.

    Feychting, M. & Ahlbom, A. Ответ авторов. Am. J. Epidemiol. 140 , 75 (1994).

    Артикул Google Scholar

  • 8.

    Дрейпер, Г., Винсент, Т., Кролл, М. Э. и Суонсон, Дж. Рак в детском возрасте в зависимости от расстояния от высоковольтных линий электропередач в Англии и Уэльсе: исследование случай-контроль. BMJ. 330 , 1290 (2005).

    PubMed PubMed Central Статья Google Scholar

  • 9.

    Берги, А., Сагар, С., Стручен, Б., Джосс, С. и Роосли, М. Моделирование воздействия чрезвычайно низкочастотных магнитных полей от воздушных линий электропередачи и его подтверждение измерениями. Внутр. J. Environ. Res. Общественное здравоохранение 14 , 949 (2017).

    PubMed Central Статья Google Scholar

  • 10.

    Swanson, J. Методы, использованные для расчета облучения в двух эпидемиологических исследованиях линий электропередач в Великобритании. J. Radiol. Prot. 28 , 45–59 (2008).

    PubMed Статья Google Scholar

  • 11.

    Kheifets, L., Feychting, M. & Schuz, J. Детский рак и линии электропередач: результаты зависят от выбранной контрольной группы. BMJ 331 , 635 (2005).

    PubMed PubMed Central Статья Google Scholar

  • 12.

    Банч, К. Дж., Суонсон, Дж., Винсент, Т. Дж. И Мерфи, М. Ф. Эпидемиологическое исследование линий электропередач и рака у детей в Великобритании: дальнейший анализ. J. Radiol. Prot. 36 , 437–455 (2016).

    CAS PubMed Статья Google Scholar

  • 13.

    Pedersen, C., Johansen, C., Schuz, J., Olsen, JH, Raaschou-Nielsen, O. Воздействие чрезвычайно низкочастотных магнитных полей в жилых помещениях и риск развития лейкемии, опухоли ЦНС и лимфомы у детей в Дании. Br. J. Cancer 113 , 1370–1374 (2015).

    CAS PubMed PubMed Central Статья Google Scholar

  • 14.

    Сермаж-Фор, К., Демури, К., Рудант, Дж., Гужон-Беллек, С., Гайо-Губен, А., Дешам, Ф. и др. Детская лейкемия вблизи высоковольтных линий электропередачи — исследование Geocap, 2002–2007 гг. Br. J. Cancer 108 , 1899–1906 (2013).

    CAS PubMed PubMed Central Статья Google Scholar

  • 15.

    Crespi, C.M., Vergara, X.P., Hooper, C., Oksuzyan, S., Wu, S. & Cockburn, M. et al. Детский лейкоз и расстояние от линий электропередач в Калифорнии: популяционное исследование методом случай-контроль. Br. J. Cancer 115 , 122–128 (2016).

    PubMed PubMed Central Статья Google Scholar

  • 16.

    Блаасаас, К. Г. и Тайнс, Т. Сравнение трех различных способов измерения расстояний между жилыми домами и высоковольтными линиями электропередач. Биоэлектромагнетизм 23 , 288–291 (2002).

    PubMed Статья Google Scholar

  • 17.

    Verkasalo, P. K., Pukkala, E., Hongisto, M. Y., Valjus, J. E., Jarvinen, P. J., Heikkila, K. V. et al. Риск рака у финских детей, живущих вблизи линий электропередач. BMJ 307 , 895–899 (1993).

    CAS PubMed PubMed Central Статья Google Scholar

  • 18.

    Фейхтинг М. и Альбом А. Магнитные поля и рак у детей, проживающих вблизи шведских высоковольтных линий электропередачи. Am. J. Epidemiol 138 , 467–481 (1993).

    CAS PubMed Статья Google Scholar

  • 19.

    Тайнс, Т. и Халдорсен, Т. Электромагнитные поля и рак у детей, проживающих вблизи норвежских высоковольтных линий электропередачи. Am. J. Epidemiol. 145 , 219–226 (1997).

    CAS PubMed Статья Google Scholar

  • 20.

    Adam, M., Kuehni, C.E., Spoerri, A., Schmidlin, K., Gumy-Pause, F. & Brazzola, P. et al. Социально-экономический статус и заболеваемость детской лейкемией в Швейцарии. Фронт. Онкол 5 , 139 (2015).

    PubMed PubMed Central Статья Google Scholar

  • 21.

    Адам, М., Ребхольц, К. Э., Эггер, М., Цвален, М. и Куехни, К. Э. Лейкемия в детском возрасте и социально-экономический статус: каковы доказательства? Radiat. Prot. Дозиметрия 132 , 246–254 (2008).

    PubMed Статья Google Scholar

  • 22.

    Пул, К., Гренландия, С., Люттерс, К., Келси, Дж. Л. и Мезеи, Г. Социально-экономический статус и детская лейкемия: обзор. Внутр. J. Epidemiol. 35 (2), 370–384 (2006).

    PubMed Статья Google Scholar

  • 23.

    Оксузян С., Креспи С.М., Кокберн М., Мезей Г., Вергара Х, Хейфец Л. Социально-экономический статус и детская лейкемия в Калифорнии. J. Cancer Prev. Curr. Res . 3 , 2015.

  • 24.

    Marquant, F., Goujon, S., Faure, L., Guissou, S., Orsi, L. & Hemon, D. et al. Риск детского рака и социально-экономические различия: результаты французского общенационального исследования geocap 2002–2010 гг. Педиатр. Перинат. Эпидемиол. 30 , 612–622 (2016).

    PubMed Статья Google Scholar

  • 25.

    Slusky, DA, Does, M., Metayer, C., Mezei, G., Selvin, S. & Buffler, PA Возможная роль смещения отбора в связи между лейкемией у детей и воздействием магнитных полей в жилых помещениях: популяционная оценка. Эпидемиология рака 38 , 307–313 (2014).

    PubMed PubMed Central Статья Google Scholar

  • 26.

    Стиллер, К. А. и Бойл, П. Дж. Влияние смешения населения и социально-экономического статуса в Англии и Уэльсе, 1979-85 гг., На лимфобластный лейкоз у детей. BMJ 313 (7068), 1297–1300 (1996).

    CAS PubMed PubMed Central Статья Google Scholar

  • 27.

    Mezei, G. & Kheifets, L. систематическая ошибка отбора и ее значение для исследований случай-контроль: тематическое исследование воздействия магнитного поля и детской лейкемии. Внутр. J. Epidemiol. 35 , 397–406 (2006).

    PubMed Статья Google Scholar

  • 28.

    Лангхольц, Б., Эби, К. Л., Томас, Д. К., Петерс, Дж. М. и Лондон, С. Дж. Плотность движения и риск детской лейкемии в исследовании случай-контроль в Лос-Анджелесе. Ann. Эпидемиол. 12 , 482–487 (2002).

    PubMed Статья Google Scholar

  • 29.

    Houot, J., Marquant, F., Goujon, S., Faure, L., Honore, C. & Roth, M. H. et al. Близость жилых домов к дорогам с интенсивным движением, воздействие бензола и детская лейкемия — исследование GEOCAP, 2002–2007 гг. Am. J. Epidemiol. 182 , 685–693 (2015).

    PubMed PubMed Central Статья Google Scholar

  • 30.

    Feychting, M., Svensson, D. & Ahlbom, A. Воздействие выхлопных газов автомобилей и детский рак. Сканд. J. Work Environ. Здравоохранение 24 , 8–11 (1998).

    CAS PubMed Статья Google Scholar

  • 31.

    Бут, В. Л., Бёмер, Т. К., Вендель, А. М. и Йип, Ф. Ю. Воздействие дорожного движения в жилых помещениях и детская лейкемия: систематический обзор и метаанализ. Am. J. Prev. Med. 46 , 413–422 (2014).

    PubMed PubMed Central Статья Google Scholar

  • 32.

    Филиппини, Т., Хек, Дж. Э., Малаголи, К., Дель Джоване, К. и Винчети, М. Обзор и метаанализ загрязнения наружного воздуха и риска детской лейкемии. J. Environ. Sci. Здоровье C. Environ. Канцерогенный. Ecotoxicol. Ред. 33 , 36–66 (2015).

    CAS PubMed PubMed Central Статья Google Scholar

  • 33.

    Хейфец, Л., Суонсон, Дж., Юань, Ю., Кустерс, К. и Вергара, X. Сравнительный анализ исследований детской лейкемии и магнитных полей, радона и гамма-излучения. J. Radiol. Prot. 37 , 459–491 (2017).

    PubMed Статья Google Scholar

  • 34.

    Дебрей, Т. П., Мунс, К. Г., ван Валкенхоф, Г., Эфтимиу, О., Хаммел, Н., Гроенволд, Р. Х. и др. Получите реальный результат в метаанализе индивидуальных данных участников (IPD): обзор методологии. Res. Synth. Методы 6 , 293–309 (2015).

    PubMed PubMed Central Статья Google Scholar

  • 35.

    Стюарт, Г. Б., Альтман, Д. Г., Аски, Л. М., Дулей, Л., Симмондс, М. К. и Стюарт, Л. А. Статистический анализ метаанализов данных отдельных участников: сравнение методов и рекомендации для практики. PLoS ONE 7 , e46042 (2012).

    CAS PubMed PubMed Central Статья Google Scholar

  • 36.

    Wertheimer, N. & Leeper, E. Конфигурации электропроводки и рак у детей. Am. J. Epidemiol. 109 , 273–284 (1979).

    CAS PubMed Статья Google Scholar

  • 37.

    Фултон, Дж. П., Кобб, С., Пребл, Л., Леоне, Л. и Форман, Э. Конфигурация электропроводки и детская лейкемия в Род-Айленде. Am. J. Epidemiol. 111 , 292–296 (1980).

    CAS PubMed Статья Google Scholar

  • 38.

    Савиц, Д. А., Вахтель, Х., Барнс, Ф. А., Джон, Э. М. и Тврдик, Дж. Г. Исследование рака у детей и воздействия магнитных полей с частотой 60 Гц с использованием метода случай-контроль. Am. J. Epidemiol. 128 , 21–38 (1988).

    CAS PubMed Статья Google Scholar

  • 39.

    Лондон, С. Дж., Томас, Д. К., Боуман, Дж. Д., Собел, Э., Ченг, Т. К. и Петерс, Дж. М. Воздействие электрических и магнитных полей в жилых помещениях и риск детской лейкемии. Am. J. Epidemiol. 134 , 923–937 (1991).

    CAS PubMed Статья Google Scholar

  • 40.

    Fajardo-Gutierrez, A., Navarrete-Martinez, A., Reynoso-Garcia, M., Zarzosa-Morales, ME, Mejia-Arangure, M. & Yamamoto-Kimura, LT Заболеваемость злокачественными новообразованиями в дети, посещающие больницы социального обеспечения в Мехико. Med. Педиатр. Онкол. 29 , 208–212 (1997).

    CAS PubMed Статья Google Scholar

  • 41.

    Linet, M. S., Hatch, E. E., Kleinerman, R. A., Robison, L. L., Kaune, W. T. & Friedman, D. R. et al. Воздействие магнитных полей в жилых помещениях и острый лимфобластный лейкоз у детей. N. Engl. J. Med. 337 , 1–7 (1997).

    CAS PubMed Статья Google Scholar

  • 42.

    Грин, Л. М., Миллер, А. Б., Агнью, Д. А., Гринберг, М. Л., Ли, Дж. И Вильнев, П. Дж. И др. Детский лейкоз и индивидуальный мониторинг воздействия электрических и магнитных полей в жилых помещениях в Онтарио, Канада. Контроль причин рака 10 , 233–243 (1999).

    CAS PubMed Статья Google Scholar

  • 43.

    Макбрайд, М. Л., Галлахер, Р. П., Терио, Г., Армстронг, Б. Г., Тамаро, С.И Спинелли, Дж. Дж. И др. Электрические и магнитные поля промышленной частоты и риск детской лейкемии в Канаде. Am. J. Epidemiol. 149 , 831–842 (1999).

    CAS PubMed Статья Google Scholar

  • 44.

    Wunsch-Filho, V., Pelissari, D. M., Barbieri, F. E., Sant’Anna, L., de Oliveira, C. T. & de Mata, J. F. et al. Воздействие магнитных полей и острый лимфолейкоз у детей в Сан-Паулу, Бразилия. Эпидемиология рака 35 , 534–539 (2011).

    PubMed Статья Google Scholar

  • 45.

    Pedersen, C., Raaschou-Nielsen, O., Rod, N.H., Frei, P., Poulsen, A.H. & Johansen, C. et al. Расстояние от места жительства до линии электропередачи и риск детской лейкемии: популяционное исследование методом случай-контроль в Дании. Контроль причин рака 25 , 171–177 (2014).

    PubMed Статья Google Scholar

  • 46.

    Бьянки Н., Крозиньяни П., Ровелли А., Титтарелли А., Карнелли К. А. и Росситто Ф. и др. Воздушные линии электропередач и детский лейкоз: исследование методом случай-контроль на основе реестра. Тумори 86 , 195 (2000).

    CAS PubMed Статья Google Scholar

  • 47.

    Малаголи, К., Фабби, С., Тегги, С., Кальцари, М., Поли, М. и Баллотти, Э. и др. Риск гематологических злокачественных новообразований, связанных с воздействием магнитных полей от линий электропередач: исследование случай-контроль в двух муниципалитетах северной Италии. Environ. Здравоохранение 9 , 16 (2010).

    PubMed PubMed Central Статья Google Scholar

  • 48.

    Спайчер, Б. Д., Феллер, М., Звален, М., Роосли, М., фон дер Вейд, Н. X. и Хенгартнер, Х. и др. Детский рак и атомные электростанции в Швейцарии: когортное исследование на основе переписи населения. Внутр. J. Epidemiol. 40 , 1247–1260 (2011).

    PubMed PubMed Central Статья Google Scholar

  • 49.

    Ловенталь, Р. М., Так, Д. М. и Брей, И. С. Воздействие в жилых помещениях линий электропередачи и риск лимфопролиферативных и миелопролиферативных расстройств: исследование случай-контроль. Междунар. Med. J. 37 , 614–619 (2007).

    CAS PubMed Статья Google Scholar

  • 50.

    Банч, К. Дж., Киган, Т. Дж., Суонсон, Дж., Винсент, Т. Дж. И Мерфи, М. Ф. Расстояние при рождении от воздушных линий электропередач высокого напряжения: риск рака у детей в Великобритании, 1962–2008 гг. Br. J. Cancer 110 , 1402–1408 (2014).

    CAS PubMed PubMed Central Статья Google Scholar

  • 51.

    Кабуто, М., Нитта, Х., Ямамото, С., Ямагути, Н., Акиба, С., Хонда, Ю. и др. Детская лейкемия и магнитные поля в Японии: исследование методом случай-контроль детской лейкемии и магнитных полей промышленной частоты в Японии. Внутр. J. Cancer 199 , 643–650 (2006).

    Артикул CAS Google Scholar

  • 52.

    Фейзи, А. А. П. и Араби, М. А. Острые детские лейкемии и воздействие магнитных полей, создаваемых воздушными линиями электропередачи высокого напряжения, — фактор риска в Иране. Asian Pac. J. Cancer Prev. 8 , 69 (2007).

    PubMed Google Scholar

  • 53.

    Ли, К. Ю., Ли, В. и Лин, Р. С. Риск лейкемии у детей, живущих вблизи высоковольтных линий электропередачи. J. Occup. Environ. Med. 40 , 144–147 (1998).

    CAS PubMed Статья Google Scholar

  • 54.

    Лин, Р. С., Ли, В. К. и Ли, К. Ю. Риск детской лейкемии в домохозяйствах вблизи линий электропередач. Med. Биол. Англ. Comput. 34 , 131–132 (1996).

    Артикул Google Scholar

  • 55.

    Mizoue, T., Onoe, Y., Моритаке, Х., Окамура, Дж., Сокедзима, С. и Нитта, Х. Близость жилых домов к высоковольтным линиям электропередач и риск гематологических злокачественных новообразований у детей. J. Epidemiol. 14 , 118–123 (2004).

    PubMed Статья Google Scholar

  • 56.

    Петриду, Э., Трихопулос, Д., Краваритис, А., Пурсидис, А., Дессиприс, Н., Скалкидис, Ю. и др. Линии электропередач и детская лейкемия: исследование из Греции. Внутр. J. Cancer 73 , 345–348 (1997).

    CAS PubMed Статья Google Scholar

  • 57.

    Рахман, Х. И., Шах, С. А., Алиас, Х. и Ибрагим, Х. М. Исследование связи между факторами окружающей среды и заболеваемостью острым лейкозом среди детей в долине Кланг, Малайзия. Asian Pac. J. Cancer Prev. 9 , 649–652 (2008).

    PubMed Google Scholar

  • 58.

    Сохраби, М. Р., Тарджоман, Т., Абади, А. и Явари, П. Жизнь рядом с воздушными линиями электропередачи высокого напряжения как фактор риска острого лимфобластного лейкоза у детей: исследование случай-контроль. Asian Pac. J. Cancer Prev. 11 , 423–427 (2010).

    PubMed Google Scholar

  • 59.

    Исследователи по исследованию детского рака, Великобритания. Детский рак и близость жилых домов к линиям электропередач. Br. Дж.Рак 83 , 1573 (2000).

    PubMed Central Статья Google Scholar

  • 60.

    Берк, Д. Л., Энсор, Дж. И Райли, Р. Д. Мета-анализ с использованием данных отдельных участников: одноэтапный и двухэтапный подходы, и почему они могут различаться. Stat. Med. 36 , 855–875 (2017).

    PubMed Статья Google Scholar

  • 61.

    Ло, Г. Р., Смит, А. Г. и Роман, Э., Исследование детского рака в Соединенном Королевстве I. Важность полноценного участия: уроки национального исследования «случай-контроль». Br. J. Cancer 86 , 350–355 (2002).

    CAS PubMed Статья Google Scholar

  • Линии электропередач низкого напряжения — формула расстояния между полюсами?

    Расстояние между башнями зависит от:

    • Тип используемого проводника.

      Это в основном определяется целями электрического проектирования (т. Е. Минимальной допустимой нагрузкой по току). Параметры окружающей среды также играют роль.

      Современные алюминиевые воздушные провода изготавливаются из нескольких сплавов, некоторые из которых оптимизированы по электрическим характеристикам, другие — со стальной арматурой для прочности, а третьи предназначены для суровых условий (например, морской солевой туман, вблизи береговых линий).

    • Максимально допустимое натяжение на проводнике.

      Это ограничено пределом прочности на растяжение проводника, который должен поддерживать проводник против направленной вниз силы тяжести и боковой силы ветра при максимальной скорости ветра для данной географической области.

      Если вы живете в стране циклонов / тайфунов / ураганов, скорость ветра может превышать 200 км / ч или порывы 278 км / ч (австралийский циклон 5-й категории).

    • Максимальный прогиб проводника.

      Температура проводника изменяется в зависимости от температуры окружающей среды и нагрузки (в амперах), которую несет проводник.По мере того, как проводник нагревается, он удлиняется из-за теплового расширения, и проводник провисает ближе к земле.

      Линия передачи должна быть спроектирована таким образом, чтобы поддерживать минимальный зазор над землей при максимальном прогибе. Это особенно важно при пересечении проезжей части — если линия электропередачи провисает слишком близко к дороге, транспортное средство может наехать на нее, проезжая мимо.

    Проектирование линий электропередачи находится на стыке электротехники, машиностроения, гражданского строительства и материаловедения. Не существует одной «формулы» для определения расстояния между опорами. Расстояние между опорами является частью общей конструкции линии передачи, и его необходимо рассчитывать с учетом многих переменных.

    С учетом сказанного, для обычных распределительных линий, то есть распределительных линий 11 кВ ВН + 415 В НН вокруг моего родного города, я мог бы предположить, что местная распределительная компания может иметь «типичный» дизайн. Это может выглядеть примерно так: « деревянных опор длиной 8 м, с проводником ACSR 6/1/3,75 мм, 4/3/2.5-миллиметровый заземляющий провод, расстояние между опорами 50 метров дюймов. Такая конструкция могла бы быть консервативно спроектирована с учетом местных условий (сильные солевые брызги и циклонические ветры в моем родном городе). Она не применима во всем мире.

    Проект ЛЭП

    Массовая передача = линии высокого напряжения

    Большинство основных линий электропередачи в США представляют собой линии переменного тока напряжением 230 кВ или 500 кВ. В некоторых случаях используются линии 115 кВ.Более низкие напряжения гораздо менее эффективны для транспортировки электричества на сотни или тысячи миль туда, где это необходимо, без потери значительного количества энергии.

    По соображениям безопасности, чем выше напряжение, тем большее расстояние требуется между проводниками и другими объектами, такими как деревья, здания или земля. Хотя это в значительной степени зависит от окружающей местности и уровня напряжения в линии передачи, в целом воздушные линии передачи высокого напряжения обычно находятся на высоте не менее 30 футов от земли.

    Разновидности башен

    Для высоковольтных линий обычно существует два варианта опор для опор воздушных линий электропередачи — решетчатые стальные и стальные трубчатые опоры.

    Решетчатые стальные башни более распространены и распространены, и они бывают нескольких знакомых форм и размеров. Они могут поддерживаться четырьмя бетонными опорами или комбинацией бетонных опор и направляющих тросов. Количество проводников, проходящих между каждой опорой, зависит от того, является ли линия передачи одинарной (три провода) или двухцепной (шесть проводов).

    Трубчатые стальные башни относительно новые; они состоят из единственной стальной опоры, закрепленной в земле. Они могут быть более привлекательными визуально, чем их аналоги из решетчатой ​​стали, хотя исторически они были более дорогостоящими в строительстве и могли приводить к увеличению затрат и требований на техническое обслуживание.

    Требования к допускам

    Требования к зазору касаются нескольких вопросов, в первую очередь, высоты проводов от земли и других постоянных конструкций, расстояния, которое должно быть между двумя опорами в одной линии электропередачи (или расстояния между опорами от двух или более отдельных построенных линий электропередачи. в пределах единого коридора электропередачи), а также близость линий электропередачи к дорогам и автомагистралям.Эти требования устанавливаются федеральным правительством, правительством штата и (иногда) местными органами власти, и конкретные требования зависят от того, где именно будут располагаться линия и башни.

    Стандарты надежности

    Стандарты надежности тесно связаны с требованиями к допуску. Короче говоря, это означает обеспечение того, чтобы свет оставался включенным в случае обрушения башни или другого серьезного отказа на линии.

    Подземный

    Можно закопать линии электропередачи под землей вместо строительства воздушной сети, соединенной серией стальных опор, но существуют компромиссы и требования к общественной безопасности и окружающей среде.Помимо увеличения стоимости подземных линий электропередачи (в 10–30 раз превышающей стоимость строительства воздушных линий в зависимости от напряжения), основными проблемами являются тепло и воздействие на окружающую среду.

    Когда энергия высокого напряжения течет через проводник, сопротивление в проводнике генерирует отходящее тепло (или потери при передаче). Чем выше переданная энергия, тем больше тепла выделяется. В воздушных линиях электропередачи воздух, окружающий линии, действует как изолятор и поглощает отходящее тепло.В подземных линиях электропередачи должны использоваться другие среды для отвода этого тепла, что на сегодняшний день ограничивает прокладку линий электропередач под землей до напряжений менее 500 кВ, за исключением очень коротких расстояний.

    Еще одно соображение, касающееся подземных линий, — это возмущение грунта, вызванное туннелями, через которые проходит линия передачи. Вместо того, чтобы воздействовать на землю только у основания башни, строительство подземных линий электропередачи требует обширных земляных работ и может нарушить среду обитания или водные ресурсы.Кроме того, доступ к подземной линии электропередачи, необходимой для обслуживания и ремонта, требует строительства «хранилищ». Эти своды, как правило, представляют собой конструкции размером 20 x 30 футов (примерно размером со среднюю жилую комнату), которые должны быть закопаны в землю через каждые 750-1000 футов, где проводники соединены вместе. Воздействие подземных линий электропередачи на окружающую среду и земельные ресурсы может значительно превосходить воздействие наземных линий электропередачи, и это факторы, которые учитываются в процессе планирования.

    Передача электроэнергии — Energy Education

    Рис. 1. Линии электропередачи высокого напряжения используются для передачи электроэнергии на большие расстояния. [1]

    Передача электроэнергии — это процесс доставки произведенной электроэнергии — обычно на большие расстояния — в распределительную сеть, расположенную в населенных пунктах. [2] Важной частью этого процесса являются трансформаторы, которые используются для повышения уровней напряжения, чтобы сделать возможной передачу на большие расстояния. [2]

    Система передачи электроэнергии, объединенная с электростанциями, системами распределения и подстанциями, образует так называемую электрическую сеть . Сеть удовлетворяет потребности общества в электроэнергии и является тем, что передает электроэнергию от ее генерации до конечного использования. Поскольку электростанции чаще всего расположены за пределами густонаселенных районов, система передачи должна быть довольно большой.

    Линии электропередач

    Линии электропередачи или линии передачи, такие как показанные на Рисунке 1, транспортируют электроэнергию с места на место.Обычно это электричество переменного тока, поэтому повышающие трансформаторы могут повышать напряжение. Это повышенное напряжение обеспечивает эффективную передачу на расстояние 500 и менее километров. Есть 3 типа линий: [3]

    • Воздушные линии имеют очень высокое напряжение, от 100 кВ до 800 кВ, и обеспечивают большую часть передачи на большие расстояния. 2 \ times R [/ math]

      где

      • [math] I [/ math] — ток в амперах
      • [math] R [/ math] — сопротивление в Ом.

      Выше было упомянуто, что линии высокого напряжения уменьшают эту потерянную мощность.Этот факт можно объяснить, посмотрев на передаваемую мощность, [математически] P_ {trans} = I \ times V [/ math]. По мере увеличения напряжения ток должен пропорционально уменьшаться, поскольку мощность остается постоянной. Например, если напряжение увеличивается в 100 раз, ток должен уменьшиться в 100 раз, и результирующая потеря мощности будет уменьшена на 100 2 = 10000. Однако есть предел, который является очень высоким. напряжения (2000 кВ) электричество начинает разряжаться, что приводит к большим потерям. [3] При передаче и распределения электроэнергии в Соединенных Штатах, по оценкам EIA, около 6% электроэнергии теряется. [5]

      Для дальнейшего чтения

      Для получения дополнительной информации см. Соответствующие страницы ниже:

      Список литературы

      1. ↑ Wikimedia Commons [Online], Доступно: http://commons.wikimedia.org/wiki/File:Ligne_haute-tension.jpg
      2. 2,0 2,1 Р. Пейнтер и Б.Дж. Бойделл, «Передача и распределение электроэнергии: обзор» в Введение в электричество , 1-е изд., Верхний Сэдл-Ривер, Нью-Джерси: Пирсон, 2011 г., глава 25, раздел 1, стр. 1095-1097
      3. 3,0 3,1 3,2 Р. Пейнтер и Б. Дж. Бойделл, «Линии передачи и подстанции» в книге Введение в электричество , 1-е изд., Верхняя Сэдл-Ривер, Нью-Джерси: Пирсон, 2011, глава 25, сек. .3, стр.1102-1104
      4. ↑ EIA, Неделя Канады: Интегрированная электрическая сеть повышает надежность в США, Канаде. [Онлайн], Доступно: http: // www.eia.gov/todayinenergy/detail.cfm?id=8930
      5. ↑ EIA. (27 мая 2015 г.). Потери электроэнергии [Онлайн]. Доступно: http://www.eia.gov/tools/faqs/faq.cfm?id=105&t=3

      Майкл R

      Следующая таблица Безопасное расстояние от источников ЭМП предлагается ниже, чтобы помочь уменьшить ваше воздействие электромагнитных полей (ЭМП). Но на самом деле ЭМП, излучаемые разными источниками, могут различаться значительно, а расстояния, необходимые для достижения желаемого «уровня безопасности», трудны предсказывать.Для получения более точных безопасных расстояний измерения на месте с помощью Настоятельно рекомендуется использовать соответствующие контрольно-измерительные приборы.

      Ниже приведены минимальные расстояния, обычно необходимые для уменьшить ЭДС до Широкая публика Меры предосторожности. Во многих случаях необходимые расстояния будут меньше чем показано здесь, но в некоторых случаях большее расстояние будет быть обязательным. Поэтому всегда лучше измерять надлежащее испытательное оборудование ЭМП для проверки расстояний для вашего ситуация.

      Лица с повышенной чувствительностью к электромагнитным полям — или другие серьезные проблемы со здоровьем, такие как хроническая усталость, рак или Лайм Заболевания — возможно, захотят еще больше снизить их воздействие, возможно вплоть до гораздо более строгих ЭДС Рекомендуемые уровни гиперчувствительности. Для этих проблемы, рассмотрите возможность удвоения многих из показанных расстояний в таблице ниже. И, пожалуй, самое главное, прислушивайтесь к собственному телу, интуиции и опыт в качестве вашего последнего проводника.

      Безопасное расстояние от линий электропередач …

      Трудно спрогнозировать безопасное расстояние от ЛЭП, потому что ЭДС могут сильно различаться в зависимости от ситуации. Лучший совет — измерить гауссметром, чтобы определить фактические уровни магнитных полей и расстояние требуется в вашем конкретном случае. (Особое примечание: магнитные поля конкретный компонент ЭМП, чаще всего связанный с последствиями для здоровья в исследования. Их измеряют специальными приборами, называемыми гауссметры.)

      Самые сильные магнитные поля обычно излучаются высоким напряжением. Линии электропередачи — линии электропередач на больших высоких металлических башнях. Чтобы убедиться, что вы снижаете уровни воздействия до 0,5 миллигаусс (мГс) или меньше, безопасное расстояние 700 футов может быть нужный. Это могло быть намного меньше, а иногда и больше. Ты для уверенности необходимо проверить с помощью гауссметра.

      Еще труднее предугадать безопасное расстояние от районные распределительные линии — тип, обычно встречающийся на деревянных полюса.Например, дома с ближайшим трансформатором будут иногда имеют более высокие ЭДС, потому что трансформатор является концентратором и Линии электропередач несут больше электричества для группы домов. Вопрос осложняется тем, что могут быть заблудшие электричество течет по металлическим водопроводным трубам окрестности, увеличивая магнитные поля как от мощности линии и из заглубленных труб!

      Таким образом, надежного безопасного расстояния для соседства не существует. линии электропередач.В общем, уровень магнитного поля 0,5 мГс будет быть достигнуто где-то между 10 и 200 футами от проводов. Но вы не можете сказать, просто взглянув на линии электропередач. Ты Чтобы быть уверенным, необходимо провести испытания на месте с помощью гауссметра.

      Если линии электропередач установленный под землей, магнитные поля могут быть такими же сильными, или еще сильнее. Это потому, что линии электропередачи могут быть ближе к вам, когда вы закопаны всего на несколько футов ниже, а не на 20 или 30 футов над головой.Для районов с похороненной властью линии, вы всегда должны проверять гауссметром.

      Линии электропередач также излучают электрические поля. В электрические поля от высоковольтных линий электропередачи (металлические башни) могут быть очень сильными снаружи возле проводов и простирается более чем на тысячу футов. тем не мение оказавшись внутри дома, конструкция здания обычно обеспечивает некоторую защиту, а электрические поля от электропроводки и шнуров обычно намного сильнее, чем от линий электропередач.

      Безопасное расстояние от вышек сотовой связи …

      Также сложно предсказать безопасное расстояние от вышек сотовой связи. Например, вышки сотовой связи предназначены для передачи большей части своих радиочастотная (RF) энергия по горизонтали. Некоторые области ниже башни могут иметь более низкие уровни, чем более удаленные больше соответствует высоте антенн по вертикали.

      Воздействие вышки сотовой связи будет зависеть от типа антенн, количество антенн, сколько антенн на самом деле б / у, время суток и т. д.Расстояние, необходимое для уменьшить воздействие до Широкая публика Меры предосторожности 0,010 микроватт на квадратный сантиметр. (мкВт / см²) часто составляет около четверти мили (1320 футов) или больше. Из-за погрешность, тестирование на месте с помощью широкополосного радиочастотного тестера составляет настоятельно рекомендуется.

      Немецкое исследование показало, что люди живущие в пределах 400 метров (1312 футов) от вышек сотовой связи имели более чем в 3 раза больше нормальный уровень новых онкологических заболеваний (Город Найла, 2004 г.).В израильском исследования, относительный риск рака был примерно в 4 раза выше в течение 350 метров (1148 футов) от вышки сотовой связи (Wolf et al. 1997). На основе такие выводы, минимальное безопасное расстояние 1/4 мили (1320 футов) можно считать благоразумным.

      И снова, люди с гиперчувствительностью к ЭМП или другими серьезными проблемами со здоровьем могут захотеть рассмотрите гораздо большее безопасное расстояние, возможно, полмили, или даже больше.

      Приведенные ниже безопасные расстояния основаны на фактических данных Майкла Нойерта. Измерения ЭМП в районе залива Сан-Франциско за 20-летний период. Показанные здесь расстояния обычно достаточно велики для в большинстве случаев, но не для всех. Пожалуйста, всегда измерьте с помощью тестового глюкометра, чтобы быть уверенным. (См. Примечания 1–4 внизу этой страницы.)

      Безопасные расстояния от различных источников ЭМП:

      Возможные безопасные расстояния по ЭМП
      Следует учитывать
      для распространенных источников ЭМП

      ELF
      Магнитные
      поля

      ELF
      Электрический
      Поля

      Радио
      Частота (RF)
      и микроволны

      «Общественные меры предосторожности» →

      (см. Примечание 1)

      Расстояние до


      0.5 Миллигаусс (мГ) или менее (см. Примечания 2, 3, 4)

      Расстояние до


      0,5 В переменного тока на коже (В переменного тока) (см. Примечания 2, 3, 4)

      Расстояние до


      0,010 Микроватт / см² (мкВт / см²) (см. Примечания 2, 3, 4)

      Линии электропередач
      Высокая напряжение ЛЭП (на металлических опорах) 700 футов 1000 футов
      Район ЛЭП распределительные (на деревянных опорах) От 10 до 200 футов От 10 до 60 футов
      Электрический сетевой трансформатор (на опоре или на земле) От 10 до 20 футов

      Вещательные башни
      Вышки сотовой связи / антенны 1/4 мили
      Башни радио- и телевещания 1/2 мили

      Электрические панели
      Главный электросчетчик / сервисная панель — Неэкранированный 10 футов
      Главный электросчетчик / сервисная панель — экранирована MuMetal 5 футов
      Прочие электрические панели и субпанели — неэкранированные 8 футов
      Прочие электрические панели и субпанели — экранированные МуМеталл 4 фута
      Интеллектуальные счетчики (счетчики электроэнергии, излучающие RF) 40 футов

      Электропроводка
      Электропроводка Romex для цепей на 15 и 20 ампер 2 фута 6 футов
      Электропроводка Romex для цепей от 30 до 60 А 4 фута 6 футов
      Электропроводка Romex (BX) для цепей от 70 до 200 А 6 футов 6 футов
      Электропроводка MC (BX) для цепей от 30 до 60 А 2 фута 0 футов
      Электропроводка MC (BX) для цепей от 70 до 200 А 4 фута 0 футов
      Электропроводка MC (BX) для цепей на 15 и 20 А 6 футов 0 футов

      Освещение
      Люминесцентные лампы и светильники От 4 до 8 футов Примечание 2 6 футов
      Компактные люминесцентные (КЛЛ) лампы и светильники От 2 до 4 футов Примечание 2 6 футов
      Светодиодные лампы и светильники От 2 до 6 футов Примечание 2 6 футов 2 фута
      Трансформаторы и светильники для низковольтного освещения От 2 до 6 футов Примечание 2 6 футов
      Лампы накаливания и светильники 1 фут 6 футов
      Галогенные лампы и светильники на 120 В (не галогенные с низким напряжением) 1 фут 6 футов

      Приборы
      Микроволновые печи 8 футов 6 футов 30 футов
      Холодильники 6 футов 6 футов
      Большинство других электроприборов 4 фута 6 футов
      Самые маленькие сменные трансформаторы 4 фута 6 футов
      Электровентиляторы 6 футов 6 футов
      Обогреватели электрические 8 футов 6 футов
      Спа и джакузи — нагреватели и насосы 8 футов 6 футов

      Электроника
      Большая часть компьютерного оборудования (не беспроводного) 4 фута 6 футов
      Светодиодные и ЖК-мониторы компьютерные 2 фута 6 футов
      LED, LCD, плазменные телевизоры 4 фута 6 футов
      Стереоаппаратура, прочая малая электроника 4 фута 6 футов

      Беспроводные технологии
      Сотовые телефоны 40 футов
      Беспроводные телефоны 40 футов
      База беспроводного телефона 4 фута 40 футов
      Беспроводные роутеры, Wi-Fi роутеры 4 фута 6 футов 40 футов
      Беспроводные клавиатуры и мыши 10 футов
      Радионяни 40 футов

      Примечание 1 Общий общественный уровень предосторожности мера предосторожности, которую я иногда предлагаю своим заинтересованным клиентам, которые хотят проявлять инициативу в отношении ЭМП и защищать свое здоровье. Это руководство является всего лишь предложением, основанным на моем собственном понимании Литература по исследованиям EMF и профессиональный опыт работы с клиентами для более 20 лет. Например, с магнитными полями я предлагаю уровень безопасности 0,5 мГ для обеспечения запаса прочности ниже 1,0 миллигаусс (мГ), связанный с детским раком в исследованиях. Однако для чувствительных людей и тем, у кого серьезные проблемы со здоровьем, даже более низкие уровни безопасности и, следовательно, большие расстояния могут быть соответствующий. Проконсультируйтесь со своим врачом, чтобы определить: адекватный уровень безопасности для вашей конкретной ситуации. Для получения дополнительной информации см. на нашу страницу Руководства по безопасности EMF.

      Примечание 2 Безопасное расстояние от источника ЭМП составляет просто измеренное расстояние, необходимое для уменьшения воздействия на человека до некоторого желаемый уровень безопасности для большинства случаев. Но безопасные расстояния трудно предсказать, потому что многие факторы могут вызвать вариации в фактический уровень излучаемых ЭМП, и, следовательно, изменения в фактических необходимые безопасные расстояния.Показанные здесь расстояния может снизить воздействие ЭМП до уровня безопасности, указанного на вверху диаграммы для большинства ситуаций. Во многих случаях фактические необходимые расстояния будут меньше, чем показано в этом диаграмма — но в некоторых случаях может потребоваться еще большее расстояние. Рекомендуется проводить измерения на месте с помощью тестового измерителя ЭДС, чтобы определить фактическое безопасное расстояние.

      Примечание 3 Лица с повышенной чувствительностью к электромагнитным полям — или другие серьезные проблемы со здоровьем, такие как рак, хроническая усталость или болезнь Лайма. Заболевания — возможно, они захотят еще больше снизить воздействие ЭМП, возможно вплоть до более строгих ЭДС Рекомендуемые уровни гиперчувствительности.Для этих В случае проблем со здоровьем вы можете подумать об увеличении безопасного расстояния вдвое, указанного здесь. И самое главное, прислушивайтесь к собственному телу, интуиции и опыт в отношении уровней безопасности и расстояний.

      Примечание 4 Предложения по безопасным расстояниям в этой таблице: в целом основанный о профессиональных испытаниях Майклом Нойертом на месте различных источников ЭМП в районе залива Сан-Франциско с 1992 г. Фактические выбросы ЭМП и, следовательно, соответствующее безопасное расстояние, может сильно различаться, и его трудно предсказывать.К лучше определять фактические безопасные расстояния, всегда рекомендуется измерять фактические уровни ЭДС с помощью соответствующего измерителя ЭДС, когда возможный.

      На каком безопасном расстоянии жить вблизи высоковольтных линий электропередачи.

      Стоит ли беспокоиться, если вы живете рядом с высоковольтными линиями электропередач. Есть ли значительный риск? Как далеко вы должны находиться от высоковольтных линий электропередачи?

      Вы находитесь рядом с высоковольтной линией электропередачи? Или трансформатор? Или линия электропоезда? Есть ли в непосредственной близости от вашего дома внутренние линии электропередач? Если ответ на любой из этих вопросов утвердительный, вам следует потратить следующие 5 минут на чтение этой статьи.

      Чрезвычайно низкочастотное (СНЧ) излучение

      Прохождение электрического тока через проводник вызывает излучение КНЧ. Излучение крайне низкой частоты (СНЧ) может вызвать рак. Впервые это исследование было исследовано МАИР в 2002 году. После этого оно было подтверждено ВОЗ в 2007 году. Излучение с чрезвычайно низкой частотой (КНЧ) связано с увеличением детской лейкемии на 200% . Если вы хотите узнать больше об излучении СНЧ, щелкните здесь.

      Безопасно ли жить рядом с ЛЭП?

      КНЧ-излучение от линий электропередачи опасно для организма.Известно, что он вызывает головную боль, головокружение, усталость и бессонницу. Это приводит к гипертонии, раздражительности, вялости, снижению уровня энергии, ожирению и т. Д. Таким образом, даже при отсутствии научных доказательств, КНЧ-излучение представляет опасность для здоровья. Значит, жить возле ЛЭП небезопасно.

      Но существуют законы, обеспечивающие безопасность от этих линий электропередач.

      Большая часть законодательства по безопасности, касающегося линий электропередач, включена в участок земли по обе стороны от линии электропередачи HT.Это называется «право проезда». Отвод — это земельный участок вокруг линий электропередач, на котором не должно быть разрешено проживание людей. В большинстве случаев это земля в 20-23 метрах по обе стороны от ЛЭП HT. Законы о распределении власти требуют, чтобы эту землю оставили в покое. Это сделано для предотвращения любой аварии, которая может привести к падению токоведущего силового кабеля на землю и риску поражения электрическим током.

      Следовательно, полоса отвода не учитывает концентрацию КНЧ-излучения в зоне вокруг проводников с током.

      Полоса отвода для систем распределения электроэнергии не учитывает риски излучения КНЧ от проводников. Эти риски выходят далеко за пределы полосы отвода.

      Я живу рядом с ЛЭП. На каком безопасном расстоянии жить вблизи высоковольтных линий электропередач?

      Воздействие СНЧ из-за близости к высоковольтной линии электропередачи зависит от 2 факторов.

      1. Ток, проходящий по проводнику
      2. Расстояние разделения между субъектом (человеком, семьей, помещением) и проводником.

      Как показывает опыт, тем выше ток в проводе; тем выше уровень КНЧ-излучения, которое он производит. Следовательно, кабель бытового питания производит более низкое значение КНЧ, чем кабель распределения питания.

      Как второе практическое правило, чем дальше вы удаляетесь от проводника, тем ниже уровень КНЧ-излучения, которому вы подвергаетесь.

      Таким образом, мы построили зону безопасности , взяв оптимальные значения тока через эти проводящие кабели и расстояние до поля в качестве координат.(Эта модель является упрощенной и не учитывает множество других факторов, таких как провисание, переходные процессы и т. Д.). Следовательно, мы также предусмотрели значения полосы отвода для сравнения. Опасные зоны отмечены красным цветом, зоны риска — оранжевым, а зоны допуска — желтым. Безопасные зоны показаны зеленым цветом.

      ELF значения опасности, связанные с проживанием вблизи высоковольтных линий электропередачи.

      Сначала мы дадим соответствующие определения, относящиеся к этой модели.

      1. Пороговое значение воздействия на человека принято равным 2,5 мг . Это обеспечивается Агентством по охране окружающей среды (EPA, США).
      2. Абсолютно безопасное значение ELF показано зеленым цветом и принимается за зону, где ELF ниже 1 мг . Это соответствует стандартам строительной биологии.
      3. Между пороговым значением и абсолютно безопасным значением — , зона допуска . Некоторым чувствительным людям, таким как дети и пожилые люди, будет сложно проводить более длительное воздействие в этой зоне.
      4. Зона опасности — это зона, где ELF не подходит для длительного воздействия и проживания людей. Это отмечено красным цветом
      5. .

      Заключение

      Мы проиндексировали показания по пороговым значениям EPA и стандартам соответствия строительной биологии. Обратите внимание, что были сняты показания, согласно которым люди, живущие вблизи высоковольтных линий электропередач, проводят не менее трети своего дня в своих домах. Следовательно, воздействие излучения СНЧ представляет значительный риск для здоровья.

      Полоса отвода по сравнению с опасной зоной по сравнению с пороговой зоной по сравнению с безопасной зоной

      Примечательно, что полоса отвода — это всего лишь индекс, мало или не имеющий отношения к облучению КНЧ излучением . Следовательно, если смотреть на безопасные значения — вам нужно быть как минимум в 50 метрах от внутренних линий электропередачи и 100 метров для линий электропередачи 230-400 кВ.

      Обратите внимание, что во многих случаях эффекты излучения СНЧ не видны сразу. Они требуют времени и всегда начинаются как легкие и безобидные — нервная боль, головокружение, легкая утомляемость, легкий сон.Со временем они могут значительно увеличиться. Иногда стоит проявить осторожность.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *